The seamless model for three-dimensional datum transformation

被引:45
|
作者
Li BoFeng [1 ,2 ]
Shen YunZhong [2 ,3 ]
Li WeiXiao [2 ]
机构
[1] Curtin Univ Technol, Dept Spatial Sci, GNSS Res Ctr, Perth, WA 6845, Australia
[2] Tongji Univ, Dept Surveying & Geoinformat Engn, Shanghai 200092, Peoples R China
[3] Tongji Univ, Ctr Spatial Informat Sci & Sustainable Dev, Shanghai 200092, Peoples R China
基金
中国国家自然科学基金;
关键词
coordinate transformation; collocation; total least squares; Bursa model; Gauss-Newton method; COLLOCATION;
D O I
10.1007/s11430-012-4418-z
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
With extensive applications of space geodesy, three-dimensional datum transformation model has been necessarily used to transform the coordinates in the different coordinate systems. Its essence is to predict the coordinates of non-common points in the second coordinate system based on their coordinates in the first coordinate system and the coordinates of common points in two coordinate systems. Traditionally, the computation of seven transformation parameters and the transformation of non-common points are individually implemented, in which the errors of coordinates are taken into account only in the second system although the coordinates in both two systems are inevitably contaminated by the random errors. Moreover, the coordinate errors of non-common points are disregarded when they are transformed using the solved transformation parameters. Here we propose the seamless (rigorous) datum transformation model to compute the transformation parameters and transform the non-common points integratively, considering the errors of all coordinates in both coordinate systems. As a result, a nonlinear coordinate transformation model is formulated. Based on the Gauss-Newton algorithm and the numerical characteristics of transformation parameters, two linear versions of the established nonlinear model are individually derived. Then the least-squares collocation (prediction) method is employed to trivially solve these linear models. Finally, the simulation experiment is carried out to demonstrate the performance and benefits of the presented method. The results show that the presented method can significantly improve the precision of the coordinate transformation, especially when the non-common points are strongly correlated with the common points used to compute the transformation parameters.
引用
收藏
页码:2099 / 2108
页数:10
相关论文
共 50 条
  • [1] The seamless model for three-dimensional datum transformation
    BoFeng Li
    YunZhong Shen
    WeiXiao Li
    Science China Earth Sciences, 2012, 55 : 2099 - 2108
  • [2] The seamless model for three-dimensional datum transformation
    LI BoFeng 1
    2 Department of Surveying and Geo-informatics Engineering
    3 Centre for Spatial Information Science and Sustainable Development
    ScienceChina(EarthSciences), 2012, 55 (12) : 2099 - 2108
  • [3] On symmetrical three-dimensional datum conversion
    Yaron A. Felus
    Robert C. Burtch
    GPS Solutions, 2009, 13
  • [4] On symmetrical three-dimensional datum conversion
    Felus, Yaron A.
    Burtch, Robert C.
    GPS SOLUTIONS, 2009, 13 (01) : 65 - 74
  • [5] Nonlinear analysis of the three-dimensional datum transformation [conformal group ℂ7(3)]
    E. W. Grafarend
    J. L. Awange
    Journal of Geodesy, 2003, 77 : 66 - 76
  • [6] SARC Model for Three-Dimensional Coordinate Transformation
    Yao Jili
    Wang Shuguang
    Sun Yating
    GEO-SPATIAL INFORMATION SCIENCE, 2006, 9 (02) : 84 - 88
  • [7] SARC Model for Three-Dimensional Coordinate Transformation
    YAO Jili WANG Shuguang SUN Yating
    Geo-Spatial Information Science, 2006, (02) : 84 - 88
  • [8] Nonlinear analysis of the three-dimensional datum transformation [conformal group C7(3)]
    Grafarend, EW
    Awange, JL
    JOURNAL OF GEODESY, 2003, 77 (1-2) : 66 - 76
  • [9] Three-dimensional phase field model of proper martensitic transformation
    Artemev, A
    Jin, Y
    Khachaturyan, AG
    ACTA MATERIALIA, 2001, 49 (07) : 1165 - 1177
  • [10] A three-dimensional phase transformation model for shape memory alloys
    Barrett, DJ
    Sullivan, BJ
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 1995, 6 (06) : 831 - 839