ON PRIME AND SEMIPRIME MODULES AND COMODULES

被引:5
|
作者
Ferrero, Miguel [1 ]
Rodrigues, Virginia [2 ]
机构
[1] Univ Fed Rio Grande do Sul, Inst Matemat, BR-91509900 Porto Alegre, RS, Brazil
[2] Univ Fed Santa Catarina, Dept Matemat, BR-88040900 Florianopolis, SC, Brazil
关键词
Prime modules; prime comodules; semiprime modules; semiprime comodules; corings; coalgebras;
D O I
10.1142/S0219498806001946
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we describe the structure of prime and semiprime R-modules M such that R/Ann(R)(M) is artinian. The obtained results are then applied to describe the structure of prime and semiprime right comodules over a coring C under some assumption, where a right comodule M is said to be prime (semiprime) if the corresponding left *C-module is prime (semiprime). Finally we apply the results to coalgebras over commutative rings.
引用
收藏
页码:681 / 694
页数:14
相关论文
共 50 条
  • [1] ON PRIME AND SEMIPRIME GOLDIE MODULES
    Nguyen Van Sanh
    Asawasamrit, S.
    Ahmed, K. F. U.
    Le Phuong Thao
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2011, 4 (02) : 321 - 334
  • [2] FULLY PRIME MODULES AND FULLY SEMIPRIME MODULES
    Beachy, John A.
    Medina-Barcenas, Mauricio
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 57 (05) : 1177 - 1193
  • [3] ON THE DUAL OF WEAKLY PRIME AND SEMIPRIME MODULES
    Beyranvand, R.
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2019, 12 (02): : 175 - 190
  • [4] Modules and comodules for corings
    Wisbauer R.
    Journal of Mathematical Sciences, 2007, 142 (2) : 1899 - 1914
  • [5] On Coprime Modules and Comodules
    Wijayanti, Indah Emilia
    Wisbauer, Robert
    COMMUNICATIONS IN ALGEBRA, 2009, 37 (04) : 1308 - 1333
  • [6] CERTAIN SEMIPRIME MODULES
    Khabazian, H.
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 15 (3B): : 701 - 716
  • [7] ON SEMIPRIME GOLDIE MODULES
    Castro Perez, Jaime
    Medina Barcenas, Mauricio
    Rios Montes, Jose
    Zaldivar Corichi, Angel
    COMMUNICATIONS IN ALGEBRA, 2016, 44 (11) : 4749 - 4768
  • [8] SEMIPRIME MODULES AND RINGS
    DAUNS, J
    LECTURE NOTES IN MATHEMATICS, 1990, 1448 : 41 - 62
  • [9] On prime and semiprime rings with derivations
    Argaç, N
    ALGEBRA COLLOQUIUM, 2006, 13 (03) : 371 - 380
  • [10] DERIVATIONS OF PRIME AND SEMIPRIME RINGS
    Argac, Nurcan
    Inceboz, Hulya G.
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2009, 46 (05) : 997 - 1005