On a class of Einstein hypersurfaces immersed in a Riemannian manifold

被引:0
|
作者
Mihai, I. [1 ,2 ,3 ]
Rosca, R.
Verstraelen, L. [2 ]
机构
[1] Fac Math, Bucharest 70109, Romania
[2] Katholieke Univ Leuven, Dept Wiskunde, B-3001 Louvain, Belgium
[3] Katholieke Univ Leuven, Res Council, B-3001 Louvain, Belgium
关键词
Mathematics Subject Classification (2000). 53C25, 53B21, 53D15;
D O I
10.1007/s10231-001-8198-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let x : M -> (M) over tilde be an isometric immersion of a hypersurface M into an (n + 1)-dimensional Riemannian manifold (M) over tilde and let rho(i) (i is an element of {1, ..., n}) be the principal curvatures of M. We denote by E and P the distinguished vector field and the curvature vector field of M, respectively, in the sense of [8]. If M is structured by a P-parallel connection [7], then it is Einsteinian. In this case, all the curvature 2-forms are exact and other properties induced by E and P are stated. The principal curvatures rho(i) are isoparametric functions and the set (rho(1), ...,rho(n)) defines an isoparametric system [10]. In the last section, we assume that, in addition, M is endowed with an almost symplectic structure. Then, the dual 1- form pi = P-b of P is symplectic harmonic. If M is compact, then its 2nd Betti number b(2) >= 1.
引用
收藏
页码:71 / 79
页数:9
相关论文
共 50 条
  • [1] On a class of Einstein hypersurfaces immersed in a Riemannian manifold
    I. Mihai
    R. Rosca
    L. Verstraelen
    Annali di Matematica Pura ed Applicata, 2001, 180 : 71 - 79
  • [2] Hypersurfaces immersed in a golden Riemannian manifold
    Qayyoom, Mohammad Aamir
    Ahmad, Mobin
    AFRIKA MATEMATIKA, 2022, 33 (01)
  • [3] Hypersurfaces immersed in a golden Riemannian manifold
    Mohammad Aamir Qayyoom
    Mobin Ahmad
    Afrika Matematika, 2022, 33
  • [4] Revisiting linear Weingarten hypersurfaces immersed into a locally symmetric Riemannian manifold
    Eudes L. de Lima
    Henrique F. de Lima
    Lucas S. Rocha
    European Journal of Mathematics, 2022, 8 : 388 - 402
  • [5] Revisiting linear Weingarten hypersurfaces immersed into a locally symmetric Riemannian manifold
    de Lima, Eudes L.
    de Lima, Henrique F.
    Rocha, Lucas S.
    EUROPEAN JOURNAL OF MATHEMATICS, 2022, 8 (01) : 388 - 402
  • [6] HYPERSURFACES OF A RIEMANNIAN MANIFOLD
    MaChuanyu
    南京大学学报(自然科学版), 1996, (01) : 7 - 11
  • [7] NOTES ON HYPERSURFACES IN A RIEMANNIAN MANIFOLD
    YANO, K
    CANADIAN JOURNAL OF MATHEMATICS, 1967, 19 (02): : 439 - &
  • [8] A Class of Complete Hypersurfaces Immersed in Semi-Riemannian Warped Product Spaces
    Yan ZHAO
    Ximin LIU
    Journal of Mathematical Research with Applications, 2016, 36 (06) : 723 - 731
  • [9] Curvature estimates for immersed hypersurfaces in Riemannian manifolds
    Pengfei Guan
    Siyuan Lu
    Inventiones mathematicae, 2017, 208 : 191 - 215
  • [10] Curvature estimates for immersed hypersurfaces in Riemannian manifolds
    Guan, Pengfei
    Lu, Siyuan
    INVENTIONES MATHEMATICAE, 2017, 208 (01) : 191 - 215