MBE-grown laser diodes based on beryllium containing II-VI semiconductors

被引:5
|
作者
Lugauer, HJ
Keim, M
Reuscher, G
Grabs, P
Lunz, U
Waag, A
Landwehr, G
Ivanov, S
Shubina, T
Toropov, A
Il'inskaya, N
Kop'ev, P
Alferov, Z
机构
[1] Univ Wurzburg, Inst Phys, D-97074 Wurzburg, Germany
[2] AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia
基金
俄罗斯基础研究基金会;
关键词
laser diodes; II-VI semiconductors; Beryllium chalcogenides; p-type doping;
D O I
10.1016/S0022-0248(98)01493-6
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
We focus on several aspects of our recent optimization of Beryllium-containing ZnSe-based laser diodes. By passivating the GaAs surface with a BeTe buffer, defect densities below 10(4) cm(-2) can be achieved. Structures with BeZnSe-ZnSe-strained layer superlattices in the waveguide regions show T-0 values of 366 K at room temperature and, consequently, laser operation up to 140 degrees C due to an efficient electrical confinement by the superlattice waveguide. In order to circumvent the limitation concerning the band gap ( < 2.85 eV) of the p-type claddings, the p-type doping of BeMgZnSe/BeTe short period superlattices has been investigated. The insertion of BeTe fractional monolayers is shown to increase the p-type doping beyond the limits usually set by compensation in high band gap BeMgZnSe. Theoretical calculations indicate that an asymmetric design of the band gap of the cladding layers can reduce current overflow and also enable blue emission with the Beryllium-based material system. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:927 / 932
页数:6
相关论文
共 50 条
  • [1] Laser diodes based on beryllium containing II-VI semiconductors
    Waag, A
    Lugauer, HJ
    Keim, M
    Reuscher, G
    Grabs, P
    Landwehr, G
    Ivanov, S
    Shubina, T
    Toropov, A
    Il'inskaya, N
    Kop'ev, P
    Alferov, Z
    BLUE LASER AND LIGHT EMITTING DIODES II, 1998, : 401 - 404
  • [2] MBE-Grown II-VI and Related Nanostructures
    Sou, I. K.
    Lok, S. K.
    Wang, G.
    Wang, N.
    Wong, G. K. L.
    JOURNAL OF ELECTRONIC MATERIALS, 2010, 39 (07) : 882 - 892
  • [3] Beryllium-containing materials for II-VI laser diodes
    Waag, A
    Litz, T
    Fischer, F
    Lugauer, HJ
    Gunshor, RL
    Landwehr, G
    PHYSICS AND SIMULATION OF OPTOELECTRONIC DEVICES V, 1997, 2994 : 32 - 42
  • [4] Characterization of MBE-grown II-VI semiconductor distributed Bragg reflectors
    Peiris, F.C.
    Lee, S.
    Bindley, U.
    Furdyna, J.K.
    Stuckey, A.M.
    Martin, M.R.
    Buschert, J.R.
    Journal of Crystal Growth, 1999, 201 : 1040 - 1043
  • [5] Characterization of MBE-grown II-VI semiconductor distributed Bragg reflectors
    Peiris, FC
    Lee, S
    Bindley, U
    Furdyna, JK
    Stuckey, AM
    Martin, MR
    Buschert, JR
    JOURNAL OF CRYSTAL GROWTH, 1999, 201 : 1040 - 1043
  • [6] RECENT DEVELOPMENTS IN THE MBE GROWTH OF WIDE BANDGAP II-VI SEMICONDUCTORS FOR LASER-DIODES AND LEDS
    QIU, J
    CHENG, H
    DEPUYDT, JM
    HAASE, MA
    JOURNAL OF CRYSTAL GROWTH, 1993, 127 (1-4) : 279 - 286
  • [7] MBE-Grown II–VI and Related Nanostructures
    I. K. Sou
    S.K. Lok
    G. Wang
    N. Wang
    G.K.L. Wong
    Journal of Electronic Materials, 2010, 39 : 882 - 892
  • [8] Investigation of degradation in beryllium chalcogenide II-VI semiconductors
    Tsai, W. C.
    Cheng, C. L.
    Chen, T. T.
    Chen, Y. F.
    Huang, Y. S.
    Firszt, F.
    Meczynska, H.
    Marasek, A.
    Legowski, S.
    Strzakolwski, K.
    APPLIED PHYSICS LETTERS, 2006, 89 (12)
  • [9] Compact green laser converter with injection pumping, based on MBE grown II-VI nanostructures
    Ivanov, S. V.
    Lutsenko, E. V.
    Sorokin, S. V.
    Sedova, I. V.
    Gronin, S. V.
    Voinilovich, A. G.
    Tarasuk, N. P.
    Yablonskii, G. P.
    Kop'ev, P. S.
    JOURNAL OF CRYSTAL GROWTH, 2009, 311 (07) : 2120 - 2122
  • [10] Beryllium containing II-VI semiconductor devices
    Waag, A
    Fischer, F
    Lugauer, HJ
    Schull, K
    Zehnder, U
    Gerhard, T
    Keim, M
    Reuscher, G
    Landwehr, G
    PHYSICS AND SIMULATION OF OPTOELECTRONIC DEVICES VI, PTS 1 AND 2, 1998, 3283 : 30 - 38