Regional Semantic Contrast and Aggregation for Weakly Supervised Semantic Segmentation

被引:105
|
作者
Zhou, Tianfei [1 ]
Zhang, Meijie [2 ]
Zhao, Fang [3 ]
Li, Jianwu [2 ]
机构
[1] Swiss Fed Inst Technol, Comp Vis Lab, Zurich, Switzerland
[2] Beijing Inst Technol, Beijing, Peoples R China
[3] Incept Inst AI, Abu Dhabi, U Arab Emirates
基金
北京市自然科学基金;
关键词
D O I
10.1109/CVPR52688.2022.00426
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Learning semantic segmentation from weakly-labeled (e.g., image tags only) data is challenging since it is hard to infer dense object regions from sparse semantic tags. Despite being broadly studied, most current efforts directly learn from limited semantic annotations carried by individual image or image pairs, and struggle to obtain integral localization maps. Our work alleviates this from a novel perspective, by exploring rich semantic contexts synergistically among abundant weakly-labeled training data for network learning and inference. In particular, we propose regional semantic contrast and cggregation (RCA). RCA is equipped with a regional memory bank to store massive, diverse object patterns appearing in training data, which acts as strong support for exploration of dataset-level semantic structure. Particularly, we propose i) semantic contrast to drive network learning by contrasting massive categorical object regions, leading to a more holistic object pattern understanding, and ii) semantic aggregation to gather diverse relational contexts in the memory to enrich semantic representations. In this manner, RCA earns a strong capability of fine-grained semantic understanding, and eventually establishes new state-of-the-art results on two popular benchmarks, i.e., PASCAL VOC 2012 and COCO 2014.
引用
收藏
页码:4289 / 4299
页数:11
相关论文
共 50 条
  • [1] Hierarchical Semantic Contrast for Weakly Supervised Semantic Segmentation
    Wu, Yuanchen
    Li, Xiaoqiang
    Dai, Songmin
    Li, Jide
    Liu, Tong
    Xie, Shaorong
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 1542 - 1550
  • [2] Token Contrast for Weakly-Supervised Semantic Segmentation
    Ru, Lixiang
    Zheng, Hehang
    Zhan, Yibing
    Du, Bo
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 3093 - 3102
  • [3] Adaptive Patch Contrast for Weakly Supervised Semantic Segmentation
    Wu, Wangyu
    Dai, Tianhong
    Chen, Zhenhong
    Huang, Xiaowei
    Xiao, Jimin
    Ma, Fei
    Ouyang, Renrong
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 139
  • [4] Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast
    Du, Ye
    Fu, Zehua
    Liu, Qingjie
    Wang, Yunhong
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 4310 - 4319
  • [5] Weakly Supervised RBM for Semantic Segmentation
    Li, Yong
    Liu, Jing
    Wang, Yuhang
    Lu, Hanqing
    Ma, Songde
    PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI), 2015, : 1888 - 1894
  • [6] A Survey of Weakly -supervised Semantic Segmentation
    Zhu, Kaiyin
    Xiong, Neal N.
    Lu, Mingming
    2023 IEEE 9TH INTL CONFERENCE ON BIG DATA SECURITY ON CLOUD, BIGDATASECURITY, IEEE INTL CONFERENCE ON HIGH PERFORMANCE AND SMART COMPUTING, HPSC AND IEEE INTL CONFERENCE ON INTELLIGENT DATA AND SECURITY, IDS, 2023, : 10 - 15
  • [7] Semantic-Aware Superpixel for Weakly Supervised Semantic Segmentation
    Kim, Sangtae
    Park, Daeyoung
    Shim, Byonghyo
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 1, 2023, : 1142 - 1150
  • [8] A Brief Survey on Weakly Supervised Semantic Segmentation
    Ouassit, Youssef
    Ardchir, Soufiane
    El Ghoumari, Mohammed Yassine
    Azouazi, Mohamed
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2022, 18 (10) : 83 - 113
  • [9] PCL: Point Contrast and Labeling for Weakly Supervised Point Cloud Semantic Segmentation
    Du, Anan
    Zhou, Tianfei
    Pang, Shuchao
    Wu, Qiang
    Zhang, Jian
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 8902 - 8914
  • [10] WEAKLY SUPERVISED SEMANTIC SEGMENTATION WITH SUPERPIXEL EMBEDDING
    Xing, Frank Z.
    Cambria, Erik
    Huang, Win-Bin
    Xu, Yang
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 1269 - 1273