Stiff all-bacterial cellulose nanopaper with enhanced mechanical and barrier properties

被引:22
|
作者
Urbina, Leire [1 ]
Angeles Corcuera, Maria [1 ]
Eceiza, Arantxa [1 ]
Retegi, Alona [1 ]
机构
[1] Univ Basque Country, Dept Chem & Environm Engn, Engn Sch Gipuzkoa, Mat Technol Grp,UPV EHU, Pza Europa 1, San Sebastian 20018, Spain
关键词
Bacterial cellulose nanocrystals; Stiff; Infiltration; Nanopapers; AFM; Nanocrystalline materials; COATINGS; PAPER;
D O I
10.1016/j.matlet.2019.03.005
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This work reports on the development of fully bacterial cellulose-derived stiff nanopapers by the infiltration of bacterial cellulose nanocrystals (BCNCs) into bacterial cellulose (BC) membranes. The incorporation of the nanocrystals into BC membranes led to a more dense and compacted structure with smoother surface, improving both, the oxygen barrier properties due to the tortuous path created by the BCNCs, and the mechanical performance. This simple and practical method provides a new approach to make stiff nanopapers fully derived from BC with potential applications in eco-friendly packaging. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:67 / 70
页数:4
相关论文
共 50 条
  • [1] Optical and mechanical properties of cellulose nanopaper structures
    Tsalagkas, Dimitrios
    Zhai, Lindong
    Kim, Hyun Chan
    Kim, Jaehwan
    NANOSENSORS, BIOSENSORS, INFO-TECH SENSORS AND 3D SYSTEMS 2017, 2017, 10167
  • [2] Nacre-Inspired Bacterial Cellulose/Mica Nanopaper with Excellent Mechanical and Electrical Insulating Properties by Biosynthesis
    Sun, Wen-Bin
    Han, Zi-Meng
    Yue, Xin
    Zhang, Hao-Yu
    Yang, Kun-Peng
    Liu, Zhao-Xiang
    Li, De-Han
    Zhao, Yu-Xiang
    Ling, Zhang-Chi
    Yang, Huai-Bin
    Guan, Qing-Fang
    Yu, Shu-Hong
    ADVANCED MATERIALS, 2023, 35 (24)
  • [3] Flexible, highly transparent and iridescent all-cellulose hybrid nanopaper with enhanced mechanical strength and writable surface
    Xiong, Rui
    Han, Yangyang
    Wang, Yaru
    Zhang, Wei
    Zhang, Xinxing
    Lu, Canhui
    CARBOHYDRATE POLYMERS, 2014, 113 : 264 - 271
  • [4] Melt polycondensation to improve the dispersion of bacterial cellulose into polylactide via melt compounding: enhanced barrier and mechanical properties
    Ambrosio-Martin, J.
    Fabra, M. J.
    Lopez-Rubio, A.
    Lagaron, J. M.
    CELLULOSE, 2015, 22 (02) : 1201 - 1226
  • [5] Melt polycondensation to improve the dispersion of bacterial cellulose into polylactide via melt compounding: enhanced barrier and mechanical properties
    J. Ambrosio-Martín
    M. J. Fabra
    A. Lopez-Rubio
    J. M. Lagaron
    Cellulose, 2015, 22 : 1201 - 1226
  • [6] Mechanical response of multi-layer bacterial cellulose nanopaper reinforced polylactide laminated composites
    Hervy, Martin
    Blaker, Jonny J.
    Braz, Ana Leticia
    Lee, Koon-Yang
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2018, 107 : 155 - 163
  • [7] Grinding severity influences the viscosity of cellulose nanofiber (CNF) suspensions and mechanical properties of nanopaper
    L. C. Malucelli
    M. Matos
    C. Jordão
    L. G. Lacerda
    M. A. S. Carvalho Filho
    W. L. E. Magalhães
    Cellulose, 2018, 25 : 6581 - 6589
  • [8] Grinding severity influences the viscosity of cellulose nanofiber (CNF) suspensions and mechanical properties of nanopaper
    Malucelli, L. C.
    Matos, M.
    Jordao, C.
    Lacerda, L. G.
    Carvalho Filho, M. A. S.
    Magalhaes, W. L. E.
    CELLULOSE, 2018, 25 (11) : 6581 - 6589
  • [9] Influence of cellulose chemical pretreatment on energy consumption and viscosity of produced cellulose nanofibers (CNF) and mechanical properties of nanopaper
    L. C. Malucelli
    M. Matos
    C. Jordão
    D. Lomonaco
    L. G. Lacerda
    M. A. S. Carvalho Filho
    W. L. E. Magalhães
    Cellulose, 2019, 26 : 1667 - 1681
  • [10] Characterization of bacterial cellulose films combined with chitosan and polyvinyl alcohol: Evaluation of mechanical and barrier properties
    Cazon, Patricia
    Velazquez, Gonzalo
    Vazquez, Manuel
    CARBOHYDRATE POLYMERS, 2019, 216 : 72 - 85