n-order perturbative solution of the inhomogeneous wave equation

被引:0
|
作者
Yepez-Martinez, H. [1 ]
Porta, A. [2 ]
Yepez, E. [2 ]
机构
[1] Univ Autonoma Ciudad Mexico, Mexico City 09790, DF, Mexico
[2] Univ Nacl Autonoma Mexico, Fac Ciencias, Dept Fis, Mexico City 04510, DF, Mexico
来源
REVISTA MEXICANA DE FISICA E | 2008年 / 54卷 / 02期
关键词
Inhomogeneous media; perturbation theory; wave propagation;
D O I
暂无
中图分类号
N09 [自然科学史]; B [哲学、宗教];
学科分类号
01 ; 0101 ; 010108 ; 060207 ; 060305 ; 0712 ;
摘要
The exact solution of the inhomogeneous wave equation in one dimension, when the square of the velocity is a linear function of the position, can be written in terms of Bessel functions of the first kind. We use this solution as the zero order approximation for a perturbation expansion and apply it to the case when the square of the velocity can be written as a polynomial in the position. The first and second order perturbation terms, corresponding to quadratic and cubic terms for the square of the velocity, are obtained. A closed formula for the n-order correction in terms of integrals of the Bessel functions of the first kind was also explicitly obtained, this expression can be solved analytically for the first and second order corrections and numerically for higher terms.
引用
收藏
页码:168 / 174
页数:7
相关论文
共 50 条
  • [1] The n-order iterative schemes for a nonlinear Kirchhoff-Carrier wave equation associated with the mixed inhomogeneous conditions
    Le Xuan Truong
    Le Thi Phuong Ngoc
    Nguyen Thanh Long
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 215 (05) : 1908 - 1925
  • [2] On set-valued solution of an n-order iterative functional equation
    Zhong J.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2010, 56 (1) : 195 - 205
  • [3] An N-order Iterative Scheme for a Nonlinear Wave Equation Containing a Nonlocal Term
    Le Thi Phuong Ngoc
    Bui Minh Trib
    Nguyen Thanh Long
    FILOMAT, 2017, 31 (06) : 1755 - 1767
  • [4] An N-Order Iterative Scheme for a Nonlinear Love Equation
    P. Ngoc L.T.
    Triet N.A.
    Duy N.T.
    Long N.T.
    Vietnam Journal of Mathematics, 2016, 44 (4) : 801 - 816
  • [5] A BOUNDARY VALUE PROBLEM FOR ORDINARY DIFFERENTIAL N-ORDER EQUATION
    KLOKOV, YA
    DOKLADY AKADEMII NAUK SSSR, 1967, 176 (03): : 512 - &
  • [6] The n-order rogue waves of Fokas-Lenells equation
    Xu, Shuwei
    He, Jingsong
    Cheng, Yi
    Porseizan, K.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (06) : 1106 - 1126
  • [7] Positive Solutions to n-Order Fractional Differential Equation with Parameter
    Tan, Jing-jing
    Tan, Cong
    Zhou, Xueling
    JOURNAL OF FUNCTION SPACES, 2018, 2018
  • [8] Necessary and sufficient conditions for boundedness and stability of N-order difference equation
    El-Afifi, MM
    APPLIED MATHEMATICS AND COMPUTATION, 2003, 141 (2-3) : 427 - 445
  • [9] A SINGULAR BOUNDARY VALUE PROBLEM FOR AN ORDINARY N-ORDER DIFFERENTIAL EQUATION
    KIGURADZ.IT
    DOKLADY AKADEMII NAUK SSSR, 1970, 192 (05): : 973 - &
  • [10] Representation of solutions of n-order Riccati equation via generalized trigonometric functions
    Yamaleev, Robert M.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 420 (01) : 334 - 347