Feature selection based on double-hierarchical and multiplication-optimal fusion measurement in fuzzy neighborhood rough sets

被引:8
|
作者
Gou, Hongyuan [1 ,2 ]
Zhang, Xianyong [1 ,2 ,3 ]
机构
[1] Sichuan Normal Univ, Sch Math Sci, Chengdu 610066, Peoples R China
[2] Sichuan Normal Univ, Inst Intelligent Informat & Quantum Informat, Chengdu 610066, Peoples R China
[3] Sichuan Normal Univ, Visual Comp & Virtual Real Key Lab Sichuan Prov, Chengdu 610066, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Fuzzy neighborhood rough sets; Feature selection; Uncertainty measurement; Hierarchical fusion; Exponential optimization; Granulation nonmonotonicity; ATTRIBUTE REDUCTION; UNCERTAINTY; GRANULATION;
D O I
10.1016/j.ins.2022.10.133
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In fuzzy neighborhood rough sets (FNRSs), uncertainty measurement performs mainly classification-hierarchical and multiplication-simple fusion, so the corresponding feature selection has advancement space. This paper aims to improve uncertainty measurement and feature selection via FNRSs. Two measurement strategies regarding class -hierarchical fusion and multiplication-optimal fusion are proposed, and three measure -based heuristic feature selection algorithms are developed. Concretely, fuzzy neighborhood self-information (FNSI) and joint entropy (FNJE) constitute two bases of heterogeneous fusion, and their multiplication fusion induces both the existing measure FNSIJE (which is based on classification-level fusion) and a new measure CFNSIJE (which is based on class-level fusion); furthermore, FNSIJE and CFNSIJE are extended to the optimal measures FNSIJEE and CFNSIJEE, respectively, by exponential parameterization. The four types of fusion measures acquire their calculation algorithms and granulation nonmonotonicity and systematically motivate four heuristic feature selection algorithms, i.e., the current FNSIJE-FS and the new CFNSIJE-FS, FNSIJEE-FS, and CFNSIJEE-FS. By using examples and experiments, relevant uncertainty measurement and granulation nonmonotonicity are val-idated, while the novel selection algorithms demonstrate better classification perfor-mances. This study establishes the hierarchical fusion and exponential expansion to acquire robust uncertainty measurement and optimal feature selection, and the measure-ment, nonmonotonicity, and selection have strong generalization for information fusion and rough-set learning. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:434 / 467
页数:34
相关论文
共 50 条
  • [1] Feature subset selection based on fuzzy neighborhood rough sets
    Wang, Changzhong
    Shao, Mingwen
    He, Qiang
    Qian, Yuhua
    Qi, Yali
    KNOWLEDGE-BASED SYSTEMS, 2016, 111 : 173 - 179
  • [2] Multi-label feature selection based on fuzzy neighborhood rough sets
    Jiucheng Xu
    Kaili Shen
    Lin Sun
    Complex & Intelligent Systems, 2022, 8 : 2105 - 2129
  • [3] Feature selection for label distribution learning based on neighborhood fuzzy rough sets
    Deng, Zhixuan
    Li, Tianrui
    Zhang, Pengfei
    Liu, Keyu
    Yuan, Zhong
    Deng, Dayong
    APPLIED SOFT COMPUTING, 2025, 169
  • [4] Multi-label feature selection based on fuzzy neighborhood rough sets
    Xu, Jiucheng
    Shen, Kaili
    Sun, Lin
    COMPLEX & INTELLIGENT SYSTEMS, 2022, 8 (03) : 2105 - 2129
  • [5] Fuzzy Rough Sets-Based Incremental Feature Selection for Hierarchical Classification
    Huang, Wanli
    She, Yanhong
    He, Xiaoli
    Ding, Weiping
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2023, 31 (10) : 3721 - 3733
  • [6] Feature Selection Using Fuzzy Neighborhood Entropy-Based Uncertainty Measures for Fuzzy Neighborhood Multigranulation Rough Sets
    Sun, Lin
    Wang, Lanying
    Ding, Weiping
    Qian, Yuhua
    Xu, Jiucheng
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2021, 29 (01) : 19 - 33
  • [7] Feature selection based on neighborhood rough sets and Gini index
    Zhang Y.
    Nie B.
    Du J.
    Chen J.
    Du Y.
    Jin H.
    Zheng X.
    Chen X.
    Miao Z.
    PeerJ Computer Science, 2023, 9
  • [8] Feature selection based on neighborhood rough sets and Gini index
    Zhang, Yuchao
    Nie, Bin
    Du, Jianqiang
    Chen, Jiandong
    Du, Yuwen
    Jin, Haike
    Zheng, Xuepeng
    Chen, Xingxin
    Miao, Zhen
    PEERJ COMPUTER SCIENCE, 2023, 9
  • [9] Feature selection based on neighborhood rough sets and Gini index
    Zhang, Yuchao
    Nie, Bin
    Du, Jianqiang
    Chen, Jiandong
    Du, Yuwen
    Jin, Haike
    Zheng, Xuepeng
    Chen, Xingxin
    Miao, Zhen
    PEERJ, 2023, 11
  • [10] Interactive streaming feature selection based on neighborhood rough sets
    Zhang, Gangqiang
    Hu, Jingjing
    Yang, Jing
    Zhang, Pengfei
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 139