Mn-doped ZnO nanorod gas sensor for oxygen detection

被引:50
|
作者
Ahmed, Faheem [1 ]
Arshi, Nishat [1 ]
Anwar, M. S. [1 ]
Danish, Rehan [1 ]
Koo, Bon Heun [1 ]
机构
[1] Changwon Natl Univ, Sch Nano & Adv Mat Engn, Chang Won 641773, Gyeongnam, South Korea
关键词
ZnO; Nanorods; Microwave-hydrothermal; Gas sensor; ROOM-TEMPERATURE FERROMAGNETISM; ETHANOL SENSING CHARACTERISTICS; MAGNETIC-PROPERTIES; ZINC-OXIDE; THIN-FILM; GROWTH; PROPERTY; NANOWIRES; FE;
D O I
10.1016/j.cap.2012.12.029
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, we have used resistive sensor measurements regarding the oxygen gas sensitivity of un-doped and Mn-doped ZnO nanorods prepared by microwave-hydrothermal method. X-ray diffraction (XRD) results indicated that the Mn-doped ZnO nanorods have single phase nature with the wurtzite structure. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) results suggested that Mn-doped ZnO nanorods possessed higher aspect ratio (27) than un-doped ZnO (24). The selected area electron diffraction (SAED) pattern inferred that the ZnO nanorods have single crystalline nature with preferentially growth along [001] direction. Raman scattering spectra of Mn-doped ZnO nanorods revealed the modification in E-2 (high) mode that is related to the vibration of oxygen atoms in wurtzite ZnO, suggested the successful doping of Mn into Zn site in ZnO. The gas sensing properties measured at room temperature revealed that the Mn-doped ZnO nanorods exhibited high sensitivity as compared to un-doped ZnO. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:S64 / S68
页数:5
相关论文
共 50 条
  • [1] Influence of growth temperature on ferromagnetism of Mn-doped ZnO nanorod
    Key Laboratory of Low Dimensional Materials and Application Technology, Faculty of Materials, Optoelectronics and Physics, Xiangtan University, Xiangtan 411105, China
    Guangdianzi Jiguang, 2008, 1 (58-61):
  • [2] ZnO nanorod gas sensor for ethanol detection
    Wang, Liwei
    Kang, Yanfei
    Liu, Xianghong
    Zhang, Shoumin
    Huang, Weiping
    Wang, Shurong
    SENSORS AND ACTUATORS B-CHEMICAL, 2012, 162 (01) : 237 - 243
  • [3] Mn-doped ZnO/SnO2-based yarn sensor for ammonia detection
    Lin, Jia-Horng
    Yang, Tao
    Zhang, Xuefei
    Shiu, Bing-Chiuan
    Lou, Ching-Wen
    Li, Ting-Ting
    CERAMICS INTERNATIONAL, 2023, 49 (22) : 34431 - 34439
  • [4] Role of oxygen vacancies in the origin of ferromagnetism in Mn-doped ZnO
    Wang, Qianjin
    Wang, Jinbin
    Zhong, Xiangli
    Tan, Qiuhong
    Zhou, Yichun
    CRYSTAL RESEARCH AND TECHNOLOGY, 2011, 46 (12) : 1250 - 1256
  • [5] Low temperature ammonia gas sensor based on Mn-doped ZnO nanoparticle decorated microspheres
    Ganesh, R. Sankar
    Durgadevi, E.
    Navaneethan, M.
    Patil, V. L.
    Ponnusamy, S.
    Muthamizhchelvan, C.
    Kawasaki, S.
    Patil, P. S.
    Hayakawa, Y.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 721 : 182 - 190
  • [6] ZnO nanorod gas sensor for NO2 detection
    Liu, Fang-Tso
    Gao, Shiang-Fu
    Pei, Shao-Kai
    Tseng, Shih-Cheng
    Liu, Chin-Hsin J.
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2009, 40 (05) : 528 - 532
  • [7] Ferroic behavior induced by oxygen vacancies in Mn-doped ZnO compounds
    Souza, N. E.
    Portes, P. N.
    Sato, F.
    Silva, D. M.
    Cotica, L. F.
    Santos, I. A.
    Pineda, E. A. G.
    Hechenleitner, A. A. W.
    de Melo, M. A. C.
    INTEGRATED FERROELECTRICS, 2016, 174 (01) : 63 - 70
  • [8] Grain growth in Mn-doped ZnO
    Han, J
    Mantas, PQ
    Senos, AMR
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2000, 20 (16) : 2753 - 2758
  • [9] Properties of mn-doped ZnO nanopowder
    Schlenker, E.
    Bakin, A.
    Schmid, H.
    Mader, W.
    Bremers, H.
    Hangleiter, A.
    Wehmann, H. -H.
    Al-Suleiman, M.
    Ludke, J.
    Albrecht, M.
    Waag, A.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2008, 91 (03): : 375 - 378
  • [10] Magnetic properties of mn-doped ZnO
    Fukumura, T
    Jin, ZW
    Kawasaki, M
    Shono, T
    Hasegawa, T
    Koshihara, S
    Koinuma, H
    APPLIED PHYSICS LETTERS, 2001, 78 (07) : 958 - 960