Curve Parameterization by Moments

被引:2
|
作者
Popovici, Irina [1 ]
Withers, William Douglas [1 ]
机构
[1] USN Acad, Dept Math, Annapolis, MD 21402 USA
关键词
Circle detection; ellipse detection; conic location; conic detection; conic parameterization; moments; HOUGH TRANSFORM;
D O I
10.1109/TPAMI.2008.54
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a method for deriving a parametric description of a conic section (quadratic curve) in an image from the moments of the image with respect to several specially constructed kernel functions. In contrast to Hough-transform-type methods, the moment approach requires no large accumulator array. Judicious implementation allows the parameters to be determined using five multiplication operations and six addition operations per pixel. The use of moments renders the calculation robust in the presence of high-frequency noise or texture and resistant to small-scale irregularities in the edge. Our method is generalizable to more complex classes of curves with more parameters and to surfaces in higher dimensions.
引用
收藏
页码:15 / 26
页数:12
相关论文
共 50 条
  • [1] CURVE ALIGNMENT BY MOMENTS
    James, Gareth M.
    ANNALS OF APPLIED STATISTICS, 2007, 1 (02): : 480 - 501
  • [2] Precision rotationally invariant curve parameterization
    Alshina E.A.
    Ivanchenko E.S.
    Kalitkin N.N.
    Tishkin V.F.
    Mathematical Models and Computer Simulations, 2009, 1 (1) : 11 - 20
  • [3] Lifting curve parameterization methods to isosurfaces
    Nielson, GA
    Lee, K
    Zhang, LY
    COMPUTER AIDED GEOMETRIC DESIGN, 2004, 21 (08) : 751 - 766
  • [4] Analysis of Curve Reconstruction by Meshless Parameterization
    Michael S. Floater
    Numerical Algorithms, 2003, 32 : 87 - 98
  • [5] Sketch parameterization using curve approximation
    Sun, Zhengxing
    Wang, Wei
    Zhang, Lisha
    Liu, Jing
    GRAPHICS RECOGNITION: TEN YEARS REVIEW AND FUTURE PERSPECTIVES, 2006, 3926 : 334 - 345
  • [6] Analysis of curve reconstruction by meshless parameterization
    Floater, MS
    NUMERICAL ALGORITHMS, 2003, 32 (01) : 87 - 98
  • [7] Higher moments of the natural parameterization for SLE curves
    Rezaei, Mohammad A.
    Zhan, Dapeng
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2017, 53 (01): : 182 - 199
  • [8] CURVE RECONSTRUCTION ON RIEMANNIAN MANIFOLDS BY MESHLESS PARAMETERIZATION
    Rezaei, Ali Asghar
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2016, 17 (04): : 487 - 498
  • [9] A Re-parameterization Transformation of Bezier Curve
    Guo, Fenghua
    ADVANCES IN CIVIL AND INDUSTRIAL ENGINEERING, PTS 1-4, 2013, 353-356 : 3645 - 3648
  • [10] Parameterization Method on B-Spline Curve
    Haron, H.
    Rehman, A.
    Adi, D. I. S.
    Lim, S. P.
    Saba, T.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2012, 2012