Influence on smoothness in penalized likelihood regression for binary data

被引:0
|
作者
Jernigan, R [1 ]
O'Connell, J [1 ]
机构
[1] American Univ, Dept Math & Stat, Washington, DC 20016 USA
关键词
smoothing parameter; sensitivity; gross change; cross-validation; smoothing spline; logistic regression;
D O I
10.1007/s180-001-8326-z
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Penalized likelihood is a nonparametric regression technique which can be used to estimate a mean function for binary data. We wish to measure the sensitivity of the smoothing parameter to gross changes in the data when the optimal value of the smoothing parameter is selected using generalized cross-validation. Since penalized likelihood curve fitting requires both a grid search to determine the optimal value of the smoothing parameter and iterative solution for each grid point, naive calculations to determine the change in the optimal value of the smoothing parameter when each data value is modified are computationally intensive and time-consuming. We have developed techniques based on mathematical and numerical approximations for measuring sensitivity in penalized likelihood regression with binary data. These techniques have been applied to selected data sets to compute change in the smoothing parameter resulting from changes in individual data values.
引用
收藏
页码:481 / 504
页数:24
相关论文
共 50 条
  • [1] Influence on Smoothness in Penalized Likelihood Regression for Binary Data
    Robert Jernigan
    Julie O’Connell
    Computational Statistics, 2001, 16 : 481 - 504
  • [2] PENALIZED LIKELIHOOD FUNCTIONAL REGRESSION
    Du, Pang
    Wang, Xiao
    STATISTICA SINICA, 2014, 24 (02) : 1017 - 1041
  • [3] PENALIZED LIKELIHOOD IN COX REGRESSION
    VERWEIJ, PJM
    VANHOUWELINGEN, HC
    STATISTICS IN MEDICINE, 1994, 13 (23-24) : 2427 - 2436
  • [4] LASSO type penalized spline regression for binary data
    Mullah, Muhammad Abu Shadeque
    Hanley, James A.
    Benedetti, Andrea
    BMC MEDICAL RESEARCH METHODOLOGY, 2021, 21 (01)
  • [5] LASSO type penalized spline regression for binary data
    Muhammad Abu Shadeque Mullah
    James A. Hanley
    Andrea Benedetti
    BMC Medical Research Methodology, 21
  • [6] Variable Selection for Binary Spatial Regression: Penalized Quasi-Likelihood Approach
    Feng, Wenning
    Sarkar, Abdhi
    Lim, Chae Young
    Maiti, Tapabrata
    BIOMETRICS, 2016, 72 (04) : 1164 - 1172
  • [7] Smoothness Selection for Penalized Quantile Regression Splines
    Reiss, Philip T.
    Huang, Lei
    INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2012, 8 (01):
  • [8] Support vector regression with penalized likelihood
    Uemoto, Takumi
    Naito, Kanta
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 174
  • [9] Approximate Bayesian logistic regression via penalized likelihood by data augmentation
    Discacciati, Andrea
    Orsini, Nicola
    Greenland, Sander
    Stata Journal, 2015, 15 (03): : 712 - 736
  • [10] Penalized empirical likelihood for longitudinal expectile regression with growing dimensional data
    Zhang, Ting
    Wang, Yanan
    Wang, Lei
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2024, 53 (03) : 752 - 773