On the width of lattice-free simplices

被引:10
|
作者
Kantor, JM [1 ]
机构
[1] Univ Paris 07, Ctr Math Jussieu, F-75252 Paris 05, France
关键词
lattice; lattice-free (empty) polytopes; polytopes; simplices; width;
D O I
10.1023/A:1001164317215
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider lattice-free simplices, simplices with vertices on the lattice Z(d) in R-d and no other integral points; we show, by elementary methods, that there exist such simplices in dimension d with width (see Definition 2) going to infinity with d.
引用
收藏
页码:235 / 241
页数:7
相关论文
共 50 条
  • [1] Lattice-Free Simplices with Lattice Width 2d - o(d)
    Mayrhofer, Lukas
    Schade, Jamico
    Weltge, Stefan
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, IPCO 2022, 2022, 13265 : 375 - 386
  • [2] ON LATTICE WIDTH OF LATTICE-FREE POLYHEDRA AND HEIGHT OF HILBERT BASES
    Henk, Martin
    Kuhlmann, Stefan
    Weismantel, Robert
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2022, 36 (03) : 1918 - 1942
  • [3] Inequalities for the lattice width of lattice-free convex sets in the plane
    Gennadiy Averkov
    Christian Wagner
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2012, 53 (1): : 1 - 23
  • [4] Inequalities for the lattice width of lattice-free convex sets in the plane
    Averkov, Gennadiy
    Wagner, Christian
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2012, 53 (01): : 1 - 23
  • [5] On the maximal width of empty lattice simplices
    Haase, C
    Ziegler, GM
    EUROPEAN JOURNAL OF COMBINATORICS, 2000, 21 (01) : 111 - 119
  • [6] On Lattice-Free Orbit Polytopes
    Katrin Herr
    Thomas Rehn
    Achill Schürmann
    Discrete & Computational Geometry, 2015, 53 : 144 - 172
  • [7] On Lattice-Free Orbit Polytopes
    Herr, Katrin
    Rehn, Thomas
    Schuermann, Achill
    DISCRETE & COMPUTATIONAL GEOMETRY, 2015, 53 (01) : 144 - 172
  • [8] Lattice-Free Polytopes and Their Diameter
    Deza, M.
    Onn, S.
    Discrete and Computational Geometry, 13 (01):
  • [9] LATTICE-FREE POLYTOPES AND THEIR DIAMETER
    DEZA, M
    ONN, S
    DISCRETE & COMPUTATIONAL GEOMETRY, 1995, 13 (01) : 59 - 75
  • [10] A lattice-free concept lattice update algorithm
    Outrata, Jan
    INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2016, 45 (02) : 211 - 231