RGB-D Object Tracking: A Particle Filter Approach on GPU

被引:0
|
作者
Choi, Changhyun [1 ]
Christensen, Henrik I. [1 ]
机构
[1] Georgia Inst Technol, Coll Comp, Ctr Robot & Intelligent Machines, Atlanta, GA 30332 USA
来源
2013 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS) | 2013年
关键词
VISUAL TRACKING; KEYPOINT; EDGE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a particle filtering approach for 6-DOF object pose tracking using an RGB-D camera. Our particle filter is massively parallelized in a modern GPU so that it exhibits real-time performance even with several thousand particles. Given an a priori 3D mesh model, the proposed approach renders the object model onto texture buffers in the GPU, and the rendered results are directly used by our parallelized likelihood evaluation. Both photometric (colors) and geometric (3D points and surface normals) features are employed to determine the likelihood of each particle with respect to a given RGB-D scene. Our approach is compared with a tracker in the PCL both quantitatively and qualitatively in synthetic and real RGB-D sequences, respectively.
引用
收藏
页码:1084 / 1091
页数:8
相关论文
共 50 条
  • [1] RGB-D Object Modelling for Object Recognition and Tracking
    Prankl, Johann
    Aldoma, Aitor
    Svejda, Alexander
    Vincze, Markus
    2015 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2015, : 96 - 103
  • [2] RGB-D Object Tracking with Occlusion Detection
    Xie, Yujun
    Lu, Yao
    Gu, Shuang
    2019 15TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS 2019), 2019, : 11 - 15
  • [3] Particle swarm optimization for 3D object tracking in RGB-D images
    dos Santos Junior, Jose Guedes
    Silva do Monte Lima, Joan Paulo
    COMPUTERS & GRAPHICS-UK, 2018, 76 : 167 - 180
  • [4] 3D Object Tracking in RGB-D Images Using Particle Swarm Optimization
    dos Santos Junior, Jose Guedes
    Silva do Monte Lima, Joao Paulo
    2017 19TH SYMPOSIUM ON VIRTUAL AND AUGMENTED REALITY (SVR), 2017, : 107 - 115
  • [5] Robust Object Tracking based on RGB-D Camera
    Qi, Wenjing
    Yang, Yinfei
    Yi, Meng
    Li, Yunfeng
    Pizlo, Zygmunt
    Latecki, Longin Jan
    2014 11TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2014, : 2873 - 2878
  • [6] Cascaded Particle Filter for Real-time Tracking using RGB-D Sensor
    Liu, Xuhong
    Payandeh, Shahram
    2016 IEEE CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (CCECE), 2016,
  • [7] Self-supervised learning for RGB-D object tracking
    Zhu, Xue-Feng
    Xu, Tianyang
    Atito, Sara
    Awais, Muhammad
    Wu, Xiao-Jun
    Feng, Zhenhua
    Kittler, Josef
    PATTERN RECOGNITION, 2024, 155
  • [8] Robust Multiple Object Tracking in RGB-D Camera Networks
    Zhao, Yongheng
    Carraro, Marco
    Munaro, Matteo
    Menegatti, Emanuele
    2017 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2017, : 6625 - 6632
  • [9] RGB-D SLAM with moving object tracking in dynamic environments
    Dai, Weichen
    Zhang, Yu
    Zheng, Yuxin
    Sun, Donglei
    Li, Ping
    IET CYBER-SYSTEMS AND ROBOTICS, 2021, 3 (04) : 281 - 291
  • [10] Real-time object tracking combined RGB-D with MeanShift
    Wang G.
    Tian J.
    Zhu W.
    Fang D.
    Zhongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Central South University (Science and Technology), 2019, 50 (09): : 2163 - 2170