Introduction to Subsurface Inversion Using Reversible Jump Markov-chain Monte Carlo

被引:0
|
作者
Jun, Hyunggu [1 ]
Cho, Yongchae [2 ]
机构
[1] Kyungpook Natl Univ, Dept Geol, Daegu, South Korea
[2] Seoul Natl Univ, Dept Energy Resources Engn, Seoul, South Korea
来源
GEOPHYSICS AND GEOPHYSICAL EXPLORATION | 2022年 / 25卷 / 04期
关键词
P-wave velocity; impedance; inversion; Markov-chain; Monte Carlo; WAVE-FORM INVERSION; SEISMIC INVERSION; COLD-WATER; TOMOGRAPHY; EQUATION;
D O I
10.7582/GGE.2022.25.4.252
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Subsurface velocity is critical for the accurate resolution geological structures. The estimation of acoustic impedance is also critical, as it provides key information regarding the reservoir properties. Therefore, researchers have developed various inversion approaches for the estimation of reservoir properties. The Markov chain Monte Carlo method, which is a stochastic method, has advantages over the deterministic method, as the stochastic method enables us to attenuate the local minima problem and quantify the uncertainty of inversion results. Therefore, the Markov chain Monte Carlo inversion method has been applied to various kinds of geophysical inversion problems. However, studies on the Markov chain Monte Carlo inversion are still very few compared with deterministic approaches. In this study, we reviewed various types of reversible jump Markov chain Monte Carlo applications and explained the key concept of each application. Furthermore, we discussed future applications of the stochastic method.
引用
收藏
页码:252 / 265
页数:14
相关论文
共 50 条
  • [1] Smart pilot points using reversible-jump Markov-chain Monte Carlo
    Jimenez, S.
    Mariethoz, G.
    Brauchler, R.
    Bayer, P.
    WATER RESOURCES RESEARCH, 2016, 52 (05) : 3966 - 3983
  • [2] Stochastic inversion of fracture networks using the reversible jump Markov chain Monte Carlo algorithm
    Feng, Runhai
    Nasser, Saleh
    ENERGY, 2024, 301
  • [3] Reversible Jump Markov Chain Monte Carlo for Deconvolution
    Dongwoo Kang
    Davide Verotta
    Journal of Pharmacokinetics and Pharmacodynamics, 2007, 34 : 263 - 287
  • [4] Reversible jump Markov chain Monte Carlo for deconvolution
    Kang, Dongwoo
    Verotta, Davide
    JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS, 2007, 34 (03) : 263 - 287
  • [5] Model choice using reversible jump Markov chain Monte Carlo
    Hastie, David I.
    Green, Peter J.
    STATISTICA NEERLANDICA, 2012, 66 (03) : 309 - 338
  • [6] REVERSIBLE JUMP MARKOV CHAIN MONTE CARLO FOR PULSE FITTING
    Goodyer, Fred
    Ahmad, Bashar, I
    Godsill, Simon
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2024), 2024, : 9556 - 9560
  • [7] Multiple Damage Identification Using the Reversible Jump Markov Chain Monte Carlo
    Tiboaca, Daniela
    Barthorpe, Robert J.
    Antoniadou, Ifigeneia
    Worden, Keith
    STRUCTURAL HEALTH MONITORING 2015: SYSTEM RELIABILITY FOR VERIFICATION AND IMPLEMENTATION, VOLS. 1 AND 2, 2015, : 2374 - 2382
  • [8] THE BOOTSTRAP AND MARKOV-CHAIN MONTE CARLO
    Efron, Bradley
    JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2011, 21 (06) : 1052 - 1062
  • [9] An extension of reversible jump Markov Chain Monte Carlo in Hidden Markov Models
    Zhou, Feifei
    Chen, Jinwen
    Proceedings of the Fifth International Conference on Information and Management Sciences, 2006, 5 : 559 - 563
  • [10] A reversible jump Markov chain Monte Carlo algorithm for 1D inversion of magnetotelluric data
    Mandolesi, Eric
    Ogaya, Xenia
    Campanya, Joan
    Agostinetti, Nicola Piana
    COMPUTERS & GEOSCIENCES, 2018, 113 : 94 - 105