Application of extended Fourier amplitude sensitivity test (EFAST) method in land surface parameter sensitivity analysis

被引:8
|
作者
Wang Jian-Dong [1 ,2 ]
Guo Wei-Dong [1 ]
Li Hong-Qi [3 ]
机构
[1] Nanjing Univ, Sch Atmospher Sci, ICGCR, Nanjing 210093, Jiangsu, Peoples R China
[2] Tsinghua Univ, Sch Environm, Beijing 100084, Peoples R China
[3] China Meteorol Adm, Numer Weather Predict Ctr, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
land surface model; land surface parameter; EFAST method; Parameter sensitivity; MODEL; SCHEMES; FLUXES;
D O I
10.7498/aps.62.050202
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we explore the application of extended Fourier amplitude sensitivity test (EFAST) to land surface parameter sensitivity analysis. Based on observations of Tongyu site (Jilin province) at a degraded grassland in 2008, the EFAST method is verified and applied. The sensible heat flux and latent heat flux are used as the test variables. With the full consideration of the sensitivity of individual parameters, the coupling between the parameters is taken into account. We explore the influence on the nonlinear system under the constraints of the interaction of multiple land surface parameters with a quantitative analysis. The results show that sand content in the soil (sand) and minimal porosity of permeable water are the key factors which affect the heat sensible flux and latent heat flux significantly, which is consistent with the existing result. The sensitivity result confirms the feasibility of the EFAST method. The results of this paper are expected to guide people in designing the field observation and development of parameterization schemes in land surface model.
引用
收藏
页数:7
相关论文
共 39 条
  • [1] [蔡福 Cai Fu], 2011, [地球科学进展, Advance in Earth Sciences], V26, P300
  • [2] Ceccato P, 2002, REMOTE SENS ENVIRON, V82, P198, DOI [10.1016/S0034-4257(02)00036-6, 10.1016/S0034-4257(02)00037-8]
  • [3] Sensitivity and uncertainty analysis in spatial modelling based on GIS
    Crosetto, M
    Tarantola, S
    Saltelli, A
    [J]. AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2000, 81 (01) : 71 - 79
  • [4] Uncertainties linked to land-surface processes in climate change simulations
    Crossley, JF
    Polcher, J
    Cox, PM
    Gedney, N
    Planton, S
    [J]. CLIMATE DYNAMICS, 2000, 16 (12) : 949 - 961
  • [5] Cukier R, 1973, J CHEM PHYS
  • [6] Dai Y J, 2001, COMMON LAND MODEL
  • [8] Errico R M, 1997, B AM METEOROLOGICAL
  • [9] Estimating topology of complex networks based on sparse Bayesian learning
    Hao Chong-Qing
    Wang Jiang
    Deng Bin
    Wei Xi-Le
    [J]. ACTA PHYSICA SINICA, 2012, 61 (14)
  • [10] Improving land-surface parameterization schemes using stable water isotopes: Introducing the 'iPILPS' initiative
    Henderson-Sellers, A.
    [J]. GLOBAL AND PLANETARY CHANGE, 2006, 51 (1-2) : 3 - 24