The two lowest eigenvalues of the harmonic oscillator in the presence of a Gaussian perturbation

被引:5
|
作者
Fassari, S. [1 ,2 ,3 ]
Nieto, L. M. [4 ,5 ]
Rinaldi, F. [2 ,3 ]
机构
[1] ITMO Univ, Dept Higher Math, St Petersburg, Russia
[2] CERFIM, POB 1132, CH-6601 Locarno, Switzerland
[3] Univ Guglielmo Marconi, Dipartimento Fis Nucl Subnucl & Radiaz, Via Plinio 44, I-00193 Rome, Italy
[4] Univ Valladolid, Dept Fis Teor Atom & Opt, Valladolid 47011, Spain
[5] Univ Valladolid, IMUVA, Valladolid 47011, Spain
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2020年 / 135卷 / 09期
关键词
QUANTUM-DOT; SPECTRUM; SPECTROSCOPY;
D O I
10.1140/epjp/s13360-020-00761-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this note, we consider a one-dimensional quantum mechanical particle constrained by a parabolic well perturbed by a Gaussian potential. As the related Birman-Schwinger operator is trace class, the Fredholm determinant can be exploited in order to compute the modified eigenenergies which differ from those of the harmonic oscillator due to the presence of the Gaussian perturbation. By taking advantage of Wang's results on scalar products of four eigenfunctions of the harmonic oscillator, it is possible to evaluate quite accurately the two lowest lying eigenvalues as functions of the coupling constant lambda.
引用
收藏
页数:14
相关论文
共 50 条