Non-vanishing of the first derivative of GL(3) x GL(2) L-functions

被引:2
|
作者
Chen, Guohua [1 ]
Yan, Xiaofei [2 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
[2] Shandong Normal Univ, Sch Math & Stat, Jinan 250014, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
GL(3) x GL(2) Rankin-Selberg L-functions; non-vanishing; Kuznetsov formula; Voronoi formula; AUTOMORPHIC L-FUNCTIONS; DERIVATIVES;
D O I
10.1142/S1793042118500513
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f be a fixed self-dual Hecke-Maass cusp form for SL(3, Z) and {mu(j)} be an orthogonal basis of odd Hecke-Maass cusp forms for SL(2, Z). We prove an asymptotic formula for the average of the first derivative of the Rankin-Selberg L-function of f and mu(j) at the center point s = 1/2. This implies the non-vanishing results for the first derivative of these L-functions at the center point s = 1/2.
引用
收藏
页码:847 / 869
页数:23
相关论文
共 50 条