A physical cross-linking process of cellulose nanofibril gels with shear-controlled fibril orientation

被引:77
作者
Fall, Andreas B. [1 ,5 ]
Lindstrom, Stefan B. [2 ]
Sprakel, Joris [3 ,4 ]
Wagberg, Lars [1 ,5 ]
机构
[1] KTH, Royal Inst Technol, S-10044 Stockholm, Sweden
[2] Linkoping Univ, Inst Technol, Dept Management & Engn, SE-58183 Linkoping, Sweden
[3] Wageningen Univ, Lab Phys Chem & Colloid Sci, NL-6703 HB Wageningen, Netherlands
[4] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[5] KTH, Wallenberg Wood Sci Ctr, SE-10044 Stockholm, Sweden
基金
瑞典研究理事会;
关键词
DYNAMIC LIGHT-SCATTERING; MICROFIBRILLATED CELLULOSE; NANOCOMPOSITES; POLYELECTROLYTE; MECHANISM; NETWORKS; MODULUS;
D O I
10.1039/c2sm27223g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Cellulose nanofibrils constitute the smallest fibrous components of wood, with a width of approximately 4 nm and a length in the micrometer range. They consist of aligned linear cellulose chains with crystallinity exceeding 60%, rendering stiff, high-aspect-ratio rods. These properties are advantageous in the reinforcement components of composites. Cross-linked networks of fibrils can be used as templates into which a polymer enters. In the semi-concentrated regime (i.e. slightly above the overlap concentration), carboxy methylated fibrils dispersed in water have been physically cross-linked to form a volume-spanning network (a gel) by reducing the pH or adding salt, which diminishes the electrostatic repulsion between fibrils. By applying shear during or after this gelation process, we can orient the fibrils in a preferred direction within the gel, for the purpose of fully utilizing the high stiffness and strength of the fibrils as reinforcement components. Using these gels as templates enables precise control of the spatial distribution and orientation of the dispersed phase of the composites, optimizing the potentially very large reinforcement capacity of the nanofibrils.
引用
收藏
页码:1852 / 1863
页数:12
相关论文
共 37 条
[1]  
[Anonymous], 1956, TAPPI
[2]  
Atkins P., 2009, PHYS CHEM
[3]   Oxygen and oil barrier properties of microfibrillated cellulose films and coatings [J].
Aulin, Christian ;
Gallstedt, Mikael ;
Lindstrom, Tom .
CELLULOSE, 2010, 17 (03) :559-574
[4]   Nanoscale Cellulose Films with Different Crystallinities and Mesostructures-Their Surface Properties and Interaction with Water [J].
Aulin, Christian ;
Ahola, Susanna ;
Josefsson, Peter ;
Nishino, Takashi ;
Hirose, Yasuo ;
Osterberg, Monika ;
Wagberg, Lars .
LANGMUIR, 2009, 25 (13) :7675-7685
[5]   Nanoparticle polymer composites: Where two small worlds meet [J].
Balazs, Anna C. ;
Emrick, Todd ;
Russell, Thomas P. .
SCIENCE, 2006, 314 (5802) :1107-1110
[6]  
Boysen Earl., 2011, NANOTECHNOLOGY DUMMI, V2nd
[7]  
Broedersz CP, 2011, NAT PHYS, V7, P983, DOI [10.1038/NPHYS2127, 10.1038/nphys2127]
[8]   ROTATIONAL DIFFUSION CONSTANT OF A CYLINDRICAL PARTICLE [J].
BROERSMA, S .
JOURNAL OF CHEMICAL PHYSICS, 1960, 32 (06) :1626-1631
[9]   A versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templates [J].
Capadona, Jeffrey R. ;
Van Den Berg, Otto ;
Capadona, Lynn A. ;
Schroeter, Michael ;
Rowan, Stuart J. ;
Tyler, Dustin J. ;
Weder, Christoph .
NATURE NANOTECHNOLOGY, 2007, 2 (12) :765-769
[10]   Review: current international research into cellulose nanofibres and nanocomposites [J].
Eichhorn, S. J. ;
Dufresne, A. ;
Aranguren, M. ;
Marcovich, N. E. ;
Capadona, J. R. ;
Rowan, S. J. ;
Weder, C. ;
Thielemans, W. ;
Roman, M. ;
Renneckar, S. ;
Gindl, W. ;
Veigel, S. ;
Keckes, J. ;
Yano, H. ;
Abe, K. ;
Nogi, M. ;
Nakagaito, A. N. ;
Mangalam, A. ;
Simonsen, J. ;
Benight, A. S. ;
Bismarck, A. ;
Berglund, L. A. ;
Peijs, T. .
JOURNAL OF MATERIALS SCIENCE, 2010, 45 (01) :1-33