Hyper BL-Algebras

被引:1
|
作者
Xin, Xiao Long [1 ]
Zou, Yu Xi [1 ]
Zhan, Jian Ming [2 ]
机构
[1] Northwest Univ, Sch Math, Xian 710127, Shaanxi, Peoples R China
[2] Hubei Univ Nationalities, Dept Math, Enshi 445000, Peoples R China
基金
中国国家自然科学基金;
关键词
hyper BL-algebra; quotient hyper BL-algebra; weak filter; weak deductive system;
D O I
10.2298/FIL1819675X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We put forth the concept of hyper BL-algebras which is a generalization of BL-algebras. We give some non-trivial examples and properties of hyper BL-algebras. Moreover, we introduce weak filters and weak deductive systems of hyper BL-algebras and study the relationships between them. Then we state and prove some theorems about weak filters and weak deductive systems. In particular, we define the concept of regular compatible congruence on hyper BL-algebras and construct the quotient structure in hyper BL-algebras. Finally, we discuss the conditions in which a quotient hyper BL-algebra is an MV-algebra.
引用
收藏
页码:6675 / 6689
页数:15
相关论文
共 50 条
  • [1] Hyper-archimedean BL-algebras are MV-algebras
    Turunen, Esko
    MATHEMATICAL LOGIC QUARTERLY, 2007, 53 (02) : 170 - 175
  • [2] BL-algebras and effect algebras
    Vetterlein, T
    SOFT COMPUTING, 2005, 9 (08) : 557 - 564
  • [3] Semi-Boolean and hyper-Archimedean BL-algebras
    Turunen, Esko
    Foundations of Fuzzy Logic and Soft Computing, Proceedings, 2007, 4529 : 419 - 426
  • [4] BL-algebras and effect algebras
    T. Vetterlein
    Soft Computing, 2005, 9 : 557 - 564
  • [5] Quasihyperarchimedean BL-algebras
    Lele, Celestin
    Nganou, Jean B.
    Oumarou, Christian M. S.
    FUZZY SETS AND SYSTEMS, 2023, 463
  • [6] Uniform BL-algebras
    R. Khanegir
    G. R. Rezaei
    N. Kouhestani
    Soft Computing, 2019, 23 : 5991 - 6003
  • [7] Finite BL-algebras
    Di Nola, A
    Lettieri, A
    DISCRETE MATHEMATICS, 2003, 269 (1-3) : 93 - 112
  • [8] Varieties of BL-algebras
    Di Nola, A
    Esteva, F
    Godo, L
    Montagna, F
    SOFT COMPUTING, 2005, 9 (12) : 875 - 888
  • [9] A classification of BL-algebras
    Laskowski, MC
    Shashoua, YV
    FUZZY SETS AND SYSTEMS, 2002, 131 (03) : 271 - 282
  • [10] State BL-algebras
    Lavinia Corina Ciungu
    Anatolij Dvurečenskij
    Marek Hyčko
    Soft Computing, 2010, 15 : 619 - 634