Strong Law of Large Numbers for a Function of the Local Times of a Transient Random Walk in Zd

被引:0
|
作者
Asymont, Inna M. [1 ]
Korshunov, Dmitry [2 ]
机构
[1] Financial Univ Govt Russian Federat, Moscow, Russia
[2] Univ Lancaster, Lancaster, England
关键词
Transient random walk in <mml; math><mml; msup><mml; mrow><mml; mi mathvariant="double-struck">Z</mml; mi></mml; mi>d</mml; msup></mml; math>; documentclass[12pt]{minimal}; usepackage{amsmath}; usepackage{wasysym}; usepackage{amsfonts}; usepackage{amssymb}; usepackage{amsbsy}; usepackage{mathrsfs}; usepackage{upgreek}; setlength{; oddsidemargin}{-69pt}; begin{document}$${; mathbb {Z}}<^>d$$; end{document}<inline-graphic xlink; href="10959_2019_937_Article_IEq12; gif; Local times; Strong law of large numbers; MOMENTS;
D O I
10.1007/s10959-019-00937-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For an arbitrary transient random walk ( Sn) n=0 in Zd, d = 1, we prove a strong law of large numbers for the spatial sum similar to x.Zd f (l(n, x)) of a function f of the local times l(n, x) = similar to n i=0 I{Si = x}. Particular cases are the number of (a) visited sites [first considered by Dvoretzky and Erd <spacing diaeresis>os (Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, pp 353-367, 1951)], which corresponds to the function f (i) = I{i = 1}; (b) a-fold self-intersections of the random walk [studied by Becker and Konig (J Theor Probab 22:365-374, 2009)], which corresponds to f (i) = ia; (c) sites visited by the random walk exactly j times [considered by Erd <spacing diaeresis>os and Taylor (Acta Math Acad Sci Hung 11:137-162, 1960) and Pitt (Proc Am Math Soc 43:195-199, 1974)], where f (i) = I{i = j}.
引用
收藏
页码:2315 / 2336
页数:22
相关论文
共 50 条