VALID CONFIDENCE INTERVALS FOR POST-MODEL-SELECTION PREDICTORS

被引:24
|
作者
Bachoc, Francois [1 ]
Leeb, Hannes [2 ,3 ]
Potscher, Benedikt M. [2 ]
机构
[1] Univ Paul Sabatier, Dept Math, F-31062 Toulouse, France
[2] Univ Vienna, Dept Stat, A-1090 Vienna, Austria
[3] DataSci Univie, Vienna, Austria
来源
ANNALS OF STATISTICS | 2019年 / 47卷 / 03期
基金
奥地利科学基金会;
关键词
Inference post-model-selection; confidence intervals; optimal post-model-selection predictors; nonstandard targets; linear regression; VARIABLE SELECTION; INFERENCE; ESTIMATORS; LIKELIHOOD;
D O I
10.1214/18-AOS1721
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider inference post-model-selection in linear regression. In this setting, Berk et al. [Ann. Statist. 41 (2013a) 802-837] recently introduced a class of confidence sets, the so-called PoSI intervals, that cover a certain nonstandard quantity of interest with a user-specified minimal coverage probability, irrespective of the model selection procedure that is being used. In this paper, we generalize the PoSI intervals to confidence intervals for post-model-selection predictors.
引用
收藏
页码:1475 / 1504
页数:30
相关论文
共 50 条
  • [1] UNIFORMLY VALID CONFIDENCE INTERVALS POST-MODEL-SELECTION
    Bachoc, Francois
    Preinerstorfer, David
    Steinberger, Lukas
    ANNALS OF STATISTICS, 2020, 48 (01): : 440 - 463
  • [2] On Various Confidence Intervals Post-Model-Selection
    Leeb, Hannes
    Poetscher, Benedikt M.
    Ewald, Karl
    STATISTICAL SCIENCE, 2015, 30 (02) : 216 - 227
  • [3] On the Length of Post-Model-Selection Confidence Intervals Conditional on Polyhedral Constraints
    Kivaranovic, Danijel
    Leeb, Hannes
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2021, 116 (534) : 845 - 857
  • [4] Post-Model-Selection Prediction Intervals for Generalized Linear Models
    Dustin, Dean
    Clarke, Bertrand
    SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2024, 86 (SUPPL 1): : 301 - 326
  • [5] Valid confidence intervals in regression after variable selection
    Kabaila, P
    ECONOMETRIC THEORY, 1998, 14 (04) : 463 - 482
  • [6] Bayesian Post-Model-Selection Estimation
    Harel, Nadav
    Routtenberg, Tirza
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 175 - 179
  • [7] Efficient and adaptive post-model-selection estimators
    Bühlmann, P
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1999, 79 (01) : 1 - 9
  • [8] Post-Model-Selection Method for Density Estimation
    Wojtys, Malgorzata
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2011, 40 (17) : 3082 - 3098
  • [9] Pitfalls of post-model-selection testing: experimental quantification
    Matei Demetrescu
    Uwe Hassler
    Vladimir Kuzin
    Empirical Economics, 2011, 40 : 359 - 372
  • [10] Pitfalls of post-model-selection testing: experimental quantification
    Demetrescu, Matei
    Hassler, Uwe
    Kuzin, Vladimir
    EMPIRICAL ECONOMICS, 2011, 40 (02) : 359 - 372