Boundedness of the maximal operator in the local Morrey-Lorentz spaces

被引:13
|
作者
Aykol, Canay [1 ]
Guliyev, Vagif S. [2 ,3 ]
Serbetci, Ayhan [1 ]
机构
[1] Ankara Univ, Dept Math, TR-06100 Ankara, Turkey
[2] Ahi Evran Univ, Dept Math, Kirsehir, Turkey
[3] NAS Azerbaijan, Inst Math & Mech, Baku, Azerbaijan
关键词
Morrey spaces; Lorentz spaces; Lorentz-Morrey spaces; local Morrey-Lorentz spaces; maximal operator; SUFFICIENT CONDITIONS;
D O I
10.1186/1029-242X-2013-346
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we define a new class of functions called local Morrey-Lorentz spaces M-p,q;lambda(loc)(R-n), 0 < p,q <= infinity and 0 <= lambda <= 1. These spaces generalize Lorentz spaces such that M-p,q;0(loc) (R-n) = L-p,L-q(R-n). We show that in the case lambda < 0 or lambda > 1, the space M-p,q;lambda(loc) (R-n) is trivial, and in the limiting case lambda = 1, the space M-p,q;1(loc) (R-n) is the classical Lorentz space Lambda (infinity,t1/p - 1/q) (R-n). We show that for 0 < q <= p < infinity and 0 < lambda <= q/p, the local Morrey-Lorentz spaces M-p,q;lambda(loc) (R-n) are equal to weak Lebesgue spaces WL1/p-lambda/q (R-n). We get an embedding between local Morrey-Lorentz spaces and Lorentz-Morrey spaces. Furthermore, we obtain the boundedness of the maximal operator in the local Morrey-Lorentz spaces.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Boundedness of the maximal operator in the local Morrey-Lorentz spaces
    Canay Aykol
    Vagif S Guliyev
    Ayhan Serbetci
    Journal of Inequalities and Applications, 2013
  • [2] Fractional maximal operator in the local Morrey-Lorentz spaces and some applications
    Guliyev, V. S.
    Aykol, C.
    Kucukaslan, A.
    Serbetci, A.
    AFRIKA MATEMATIKA, 2024, 35 (01)
  • [3] The boundedness of Hilbert transform in the local Morrey-Lorentz spaces
    Aykol, C.
    Guliyev, V. S.
    Kucukaslan, A.
    Serbetci, A.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2016, 27 (04) : 318 - 330
  • [4] Maximal operator and Calderon-Zygmund operators in local Morrey-Lorentz spaces
    Guliyev, V. S.
    Aykol, C.
    Kucukaslan, A.
    Serbetci, A.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2016, 27 (11) : 866 - 877
  • [5] Embeddings for Morrey-Lorentz Spaces
    Ragusa, Maria Alessandra
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2012, 154 (02) : 491 - 499
  • [6] Boundedness of the fractional maximal operator in local Morrey-type spaces
    Burenkov, V. I.
    Gogatishvili, A.
    Guliyev, V. S.
    Mustafayev, R. Ch.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2010, 55 (8-10) : 739 - 758
  • [7] Fractional maximal operator in the local Morrey–Lorentz spaces and some applications
    V. S. Guliyev
    C. Aykol
    A. Kucukaslan
    A. Serbetci
    Afrika Matematika, 2024, 35
  • [8] PROPER EMBEDDING FOR MORREY-LORENTZ SPACES
    Hatano, Naoya
    TRANSACTIONS OF A RAZMADZE MATHEMATICAL INSTITUTE, 2024, 178 (02) : 225 - 230
  • [9] Maximal and Calderon-Zygmund operators on the local variable Morrey-Lorentz spaces and some applications
    Kucukaslan, A.
    Guliyev, V. S.
    Aykol, C.
    Serbetci, A.
    APPLICABLE ANALYSIS, 2023, 102 (02) : 406 - 415
  • [10] Riesz potential in the local Morrey-Lorentz spaces and some applications
    Guliyev, Vagif S.
    Kucukaslan, Abdulhamit
    Aykol, Canay
    Serbetci, Ayhan
    GEORGIAN MATHEMATICAL JOURNAL, 2020, 27 (04) : 557 - 567