The equivalence classes of holomorphic mappings of genus 3 Riemann surfaces onto genus 2 Riemann surfaces

被引:0
|
作者
Mednykh, A. D. [1 ]
Mednykh, I. A. [1 ]
机构
[1] Novosibirsk Siberian Fed Univ, Novosibirsk State Univ, Sobolev Inst Math, Krasnoyarsk, Russia
基金
俄罗斯基础研究基金会;
关键词
Riemann surface; holomorphic mapping; anticonformal involution; real curve; conformal automorphism; KLEIN SURFACES; THEOREM;
D O I
10.1134/S0037446616060124
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Denote the set of all holomorphic mappings of a genus 3 Riemann surface S (3) onto a genus 2 Riemann surface S (2) by Hol(S (3), S (2)). Call two mappings f and g in Hol(S (3), S (2)) equivalent whenever there exist conformal automorphisms alpha and beta of S (3) and S (2) respectively with f au broken vertical bar alpha = beta au broken vertical bar g. It is known that Hol(S (3), S (2)) always consists of at most two equivalence classes. We obtain the following results: If Hol(S (3), S (2)) consists of two equivalence classes then both S (3) and S (2) can be defined by real algebraic equations; furthermore, for every pair of inequivalent mappings f and g in Hol(S (3), S (2)) there exist anticonformal automorphisms alpha- and beta- with f au broken vertical bar alpha- = beta- au broken vertical bar g. Up to conformal equivalence, there exist exactly three pairs of Riemann surfaces (S (3), S (2)) such that Hol(S (3), S (2)) consists of two equivalence classes.
引用
收藏
页码:1055 / 1065
页数:11
相关论文
共 50 条