ON CONVERGENCE OF BOUNDARY HAUSDORFF MEASURE AND APPLICATION TO A BOUNDARY SHAPE OPTIMIZATION PROBLEM

被引:10
|
作者
Guo, Bao-Zhu [1 ,2 ,3 ]
Yang, Dong-Hui [2 ,4 ]
机构
[1] Acad Sinica, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[2] Univ Witwatersrand, Sch Computat & Appl Math, Johannesburg, South Africa
[3] Shanxi Univ, Sch Math Sci, Taiyuan 030006, Peoples R China
[4] Cent S Univ Changsha, Sch Math & Stat, Changsha 410075, Hunan, Peoples R China
基金
新加坡国家研究基金会; 中国国家自然科学基金;
关键词
shape optimization; Hausdorff measure; existence of shape optimal solution;
D O I
10.1137/110853765
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This is the second part of our recent work [SIAM J. Control Optim., 50 (2012), pp. 222-242] on new open sets class and related shape optimization. In this paper, we are concerned with a boundary shape optimization problem. It is shown that the convergence of the open sets class under the Hausdorff distance implies the convergence of the Hausdorff measure on the boundary. The existence of the boundary shape optimization is concluded.
引用
收藏
页码:253 / 272
页数:20
相关论文
共 50 条
  • [1] HAUSDORFF MEASURE ESTIMATES OF A FREE-BOUNDARY FOR A MINIMUM PROBLEM
    PHILLIPS, D
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1983, 8 (13) : 1409 - 1454
  • [2] On the A-obstacle problem and the Hausdorff measure of its free boundary
    S. Challal
    A. Lyaghfouri
    J. F. Rodrigues
    Annali di Matematica Pura ed Applicata, 2012, 191 : 113 - 165
  • [3] On the A-obstacle problem and the Hausdorff measure of its free boundary
    Challal, S.
    Lyaghfouri, A.
    Rodrigues, J. F.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2012, 191 (01) : 113 - 165
  • [4] Computing the Hausdorff Boundary Measure of Semialgebraic Sets
    Lasserre, Jean B.
    Magron, Victor
    SIAM JOURNAL ON APPLIED ALGEBRA AND GEOMETRY, 2020, 4 (03) : 441 - 469
  • [5] Free boundary regularity for a multiphase shape optimization problem
    Spolaor, Luca
    Trey, Baptiste
    Velichkov, Bozhidar
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2020, 45 (02) : 77 - 108
  • [6] Shape sensitivity analysis: An application to a free boundary problem
    Dziri, R
    Zolesio, JP
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 89 - 92
  • [7] SPEED OF CONVERGENCE IN A BOUNDARY PROBLEM
    SAKHANENKO, AI
    TEORIYA VEROYATNOSTEI I YEYE PRIMENIYA, 1974, 19 (02): : 416 - 421
  • [8] BOUNDARY HOMOGENIZATION AND BOUNDARY SHAPE OPTIMIZATION FOR A CYLINDER
    BRILLARD, A
    LECTURE NOTES IN CONTROL AND INFORMATION SCIENCES, 1992, 178 : 37 - 49
  • [9] Hausdorff measure of boundary singular points in the magnetohydrodynamic equations
    Choe, Hi Jun
    Yang, Minsuk
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (04) : 3380 - 3396
  • [10] SHAPE OPTIMIZATION FOR STOKES PROBLEM WITH THRESHOLD SLIP BOUNDARY CONDITIONS
    Haslinger, Jaroslav
    Makinen, Raino A. E.
    Stebel, Jan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2017, 10 (06): : 1281 - 1301