Metabolic Reprogramming of Trophoblast Cells in Response to Hypoxia

被引:19
|
作者
Knyazev, E. N. [1 ]
Zakharova, G. S. [1 ]
Astakhova, L. A. [1 ]
Tsypina, I. M. [1 ,2 ]
Tonevitsky, A. G. [1 ,2 ]
Sukhikh, G. T. [3 ]
机构
[1] BioClinicum Res Ctr, Moscow, Russia
[2] Natl Res Univ Higher Sch Econ, Moscow, Russia
[3] VI Kulakov Natl Med Res Ctr Obstet Gynecol & Peri, Moscow, Russia
关键词
BeWo b30; placenta; hypoxia; oxyquinoline; barrier; PATHWAY; CANCER; PLASMA;
D O I
10.1007/s10517-019-04342-1
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Hypoxia of trophoblast cells is an important regulator of normal development of the placenta. However, some pathological states associated with hypoxia, e.g. preeclampsia, impair the functions of placental cells. Oxyquinoline derivative inhibits HIF-prolyl hydroxylase by stabilizing HIF-1 transcription complex, thus modeling cell response to hypoxia. In human choriocarcinoma cells BeWo b30 (trophoblast model), oxyquinoline increased the expression of a core hypoxia response genes along with up-regulation of NOS3, PDK1, and BNIP3 genes and down-regulation of the PPARGC1B gene. These changes in the expression profile attest to activation of the metabolic cell reprogramming mechanisms aimed at reducing oxygen consumption by enabling the switch from aerobic to anaerobic glucose metabolism and the respective decrease in number of mitochondria. The possibility of practical use of the therapeutic properties of oxyquinoline derivatives is discussed.
引用
收藏
页码:321 / 325
页数:5
相关论文
共 50 条
  • [1] Metabolic Reprogramming of Trophoblast Cells in Response to Hypoxia
    E. N. Knyazev
    G. S. Zakharova
    L. A. Astakhova
    I. M. Tsypina
    A. G. Tonevitsky
    G. T. Sukhikh
    Bulletin of Experimental Biology and Medicine, 2019, 166 : 321 - 325
  • [2] Metabolic Reprogramming in the Opportunistic Yeast Candida albicans in Response to Hypoxia
    Burgain, Anais
    Tebbji, Faiza
    Khemiri, Ines
    Sellam, Adnane
    MSPHERE, 2020, 5 (01):
  • [3] Metabolic Reprogramming of Host Cells in Response to Enteroviral Infection
    Cheng, Mei-Ling
    Chien, Kun-Yi
    Lai, Chien-Hsueh
    Li, Guan-Jie
    Lin, Jui-Fen
    Ho, Hung-Yao
    CELLS, 2020, 9 (02)
  • [4] Metabolic depression: a response of cancer cells to hypoxia?
    Guppy, M
    Brunner, S
    Buchanan, M
    COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY B-BIOCHEMISTRY & MOLECULAR BIOLOGY, 2005, 140 (02): : 233 - 239
  • [5] Direct Reprogramming of Fibroblasts into Trophoblast Stem Cells
    Zita, Matteo Moretto
    Nazor, Kristopher L.
    Laurent, Louise C.
    Parast, Mana M.
    REPRODUCTIVE SCIENCES, 2012, 19 (S3) : 111A - 111A
  • [6] Cell-Autonomous Metabolic Reprogramming in Hypoxia
    Schito, Luana
    Rey, Sergio
    TRENDS IN CELL BIOLOGY, 2018, 28 (02) : 128 - 142
  • [7] Analysis of Hypoxia-Induced Metabolic Reprogramming
    Yang, Chendong
    Jiang, Lei
    Zhang, Huafeng
    Shimoda, Larissa A.
    DeBerardinis, Ralph J.
    Semenza, Gregg L.
    CONCEPTUAL BACKGROUND AND BIOENERGETIC/MITOCHONDRIAL ASPECTS OF ONCOMETABOLISM, 2014, 542 : 425 - 455
  • [8] Metabolic Flux Analysis Reveals Hypoxia-Mediated Metabolic Reprogramming in Pulmonary Microvascular Endothelial Cells
    Ziehr, D. R.
    Loscalzo, J.
    Knipe, R. S.
    Oldham, W. M.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2021, 203 (09)
  • [9] Hypoxia and lactate production in trophoblast cells
    Kay, H. H.
    Zhu, S.
    Tsoi, S.
    PLACENTA, 2007, 28 (8-9) : 854 - 860
  • [10] HuR drives lung fibroblast differentiation but not metabolic reprogramming in response to TGF-β and hypoxia
    Trivlidis, Joshua
    Aloufi, Noof
    Al-Habeeb, Fatmah
    Nair, Parameswaran
    Azuelos, Ilan
    Eidelman, David H.
    Baglole, Carolyn J.
    RESPIRATORY RESEARCH, 2021, 22 (01)