Tomography of cool giant and supergiant star atmospheres I. Validation of the method

被引:12
|
作者
Kravchenko, K. [1 ]
Van Eck, S. [1 ]
Chiavassa, A. [2 ]
Jorissen, A. [1 ]
Freytag, B. [3 ]
Plez, B. [4 ]
机构
[1] Univ Libre Bruxelles, Inst Astron & Astrophys, CP 226,Blvd Triomphe, B-1050 Brussels, Belgium
[2] Univ Cote dAzur, Observ Cote dAzur, CNRS, CS 34229, F-06304 Nice 4, France
[3] Uppsala Univ, Dept Phys & Astron, Regementsvagen 1,Box 516, S-75120 Uppsala, Sweden
[4] Univ Montpellier II, CNRS, Lab Univers & Particules Montpellier, F-34095 Montpellier 05, France
来源
ASTRONOMY & ASTROPHYSICS | 2018年 / 610卷
关键词
stars: atmospheres; stars: AGB and post-AGB; supergiants; line: formation; radiative transfer; techniques: spectroscopic; PERIOD VARIABLE-STARS; ENVELOPE TOMOGRAPHY; STELLAR ATMOSPHERES; MODEL ATMOSPHERES; SPECTRAL-LINES; DEPTHS;
D O I
10.1051/0004-6361/201731530
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. Cool giant and supergiant star atmospheres are characterized by complex velocity fields originating from convection and pulsation processes which are not fully understood yet. The velocity fields impact the formation of spectral lines, which thus contain information on the dynamics of stellar atmospheres. Aims. The tomographic method allows to recover the distribution of the component of the velocity field projected on the line of sight at different optical depths in the stellar atmosphere. The computation of the contribution function to the line depression aims at correctly identifying the depth of formation of spectral lines in order to construct numerical masks probing spectral lines forming at different optical depths. Methods. The tomographic method is applied to one-dimensional (1D) model atmospheres and to a realistic three-dimensional (3D) radiative hydrodynamics simulation performed with CO5BOLD in order to compare their spectral line formation depths and velocity fields. Results. In 1D model atmospheres, each spectral line forms in a restricted range of optical depths. On the other hand, in 3D simulations, the line formation depths are spread in the atmosphere mainly because of temperature and density inhomogeneities. Comparison of cross-correlation function profiles obtained from 3D synthetic spectra with velocities from the 3D simulation shows that the tomographic method correctly recovers the distribution of the velocity component projected on the line of sight in the atmosphere.
引用
收藏
页数:11
相关论文
共 50 条
  • [2] Tomography of cool giant and supergiant star atmospheres: III. Validation of the method on VLTI/AMBER observations of the Mira star S Ori
    Kravchenko, Kateryna
    Wittkowski, Markus
    Jorissen, Alain
    Chiavassa, Andrea
    Van Eck, Sophie
    Anderson, Richard, I
    Freytag, Bernd
    Kaeufl, Ulli
    ASTRONOMY & ASTROPHYSICS, 2020, 642
  • [3] Tomography of cool giant and supergiant star atmospheres II. Signature of convection in the atmosphere of the red supergiant star μ Cep
    Kravchenko, K.
    Chiavassa, A.
    Van Eck, S.
    Jorissen, A.
    Merle, T.
    Freytag, B.
    Plez, B.
    ASTRONOMY & ASTROPHYSICS, 2019, 632
  • [4] ISO-SWS calibration and the accurate modelling of cool-star atmospheres - I. Method
    Decin, L
    Waelkens, C
    Eriksson, K
    Gustafsson, B
    Plez, B
    Sauval, AJ
    Van Assche, W
    Vandenbussche, B
    ASTRONOMY & ASTROPHYSICS, 2000, 364 (01) : 137 - 156
  • [5] The initial conditions of observed star clusters - I. Method description and validation
    Pijloo, J. T.
    Zwart, S. F. Portegies
    Alexander, P. E. R.
    Gieles, M.
    Larsen, S. S.
    Groot, P. J.
    Devecchi, B.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 453 (01) : 605 - 637
  • [6] Critical Metallicity of Cool Supergiant Formation. I. Effects on Stellar-mass Loss and Feedback
    Ou, Po-Sheng
    Chen, Ke-Jung
    Chu, You-Hua
    Tsai, Sung-Han
    ASTROPHYSICAL JOURNAL, 2023, 944 (01):
  • [7] Kinetic equilibrium of iron in the atmospheres of cool dwarf stars I. The solar strong line spectrum
    Gehren, T
    Butler, K
    Mashonkina, L
    Reetz, J
    Shi, J
    ASTRONOMY & ASTROPHYSICS, 2001, 366 (03) : 981 - 1002
  • [8] Formation of the alkali resonance lines in cool atmospheres. I. Nai and K, in a sunspot umbra
    Caccin, B.
    Gomez, M.T.
    Severino, G.
    Astronomy and Astrophysics, 1993, 276 (01):
  • [9] THEORY OF RADIATIVE TRANSFER IN INHOMOGENEOUS ATMOSPHERES .I. PERTURBATION METHOD
    FYMAT, AL
    ABHYANKAR, KD
    ASTROPHYSICAL JOURNAL, 1969, 158 (1P1): : 315 - +
  • [10] Reflected spectra and albedos of extrasolar giant planets. I. Clear and cloudy atmospheres
    Marley, MS
    Gelino, C
    Stephens, D
    Lunine, JI
    Freedman, R
    ASTROPHYSICAL JOURNAL, 1999, 513 (02): : 879 - 893