Deep learning enabled reflective coded aperture snapshot spectral imaging

被引:15
|
作者
Yu, Zhenming [1 ]
Liu, Diyi [1 ]
Cheng, Liming [1 ]
Meng, Ziyi [1 ]
Zhao, Zhengxiang [1 ]
Yuan, Xin [2 ,3 ]
Xu, Kun [1 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
[2] Westlake Univ, Res Ctr Ind Future RCIF, Hangzhou 310030, Zhejiang, Peoples R China
[3] Westlake Univ, Sch Engn, Hangzhou 310030, Zhejiang, Peoples R China
来源
OPTICS EXPRESS | 2022年 / 30卷 / 26期
基金
中国国家自然科学基金;
关键词
ALGORITHMS; DESIGN; SYSTEM;
D O I
10.1364/OE.475129
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Coded aperture snapshot spectral imaging (CASSI) can acquire rich spatial and spectral information at ultra-high speed, which shows extensive application prospects. CASSI innovatively employed the idea of compressive sensing to capture the spatial-spectral data cube using a monochromatic detector and used reconstruction algorithms to recover the desired spatial-spectral information. Based on the optical design, CASSI currently has two different implementations: single-disperser (SD) CASSI and dual-disperser (DD) CASSI. However, SD-CASSI has poor spatial resolution naturally while DD-CASSI increases size and cost because of the extra prism. In this work, we propose a deep learning-enabled reflective coded aperture snapshot spectral imaging (R-CASSI) system, which uses a mask and a beam splitter to receive the reflected light by utilizing the reflection of the mask. The optical path design of R-CASSI makes the optical system compact, using only one prism as two dispersers. Furthermore, an encoder-decoder structure with 3D convolution kernels is built for the reconstruction, dubbed U-net-3D. The designed U-net-3D network achieves both spatial and spectral consistency, leading to state-of-the-art reconstruction results. The real data is released and can serve as a benchmark dataset to test new reconstruction algorithms.
引用
收藏
页码:46822 / 46837
页数:16
相关论文
共 50 条
  • [1] Coded aperture snapshot spectral polarization imaging
    Tsai, Tsung-Han
    Brady, David J.
    APPLIED OPTICS, 2013, 52 (10) : 2153 - 2161
  • [2] Coded aperture snapshot spectral imaging fundus camera
    Ruixuan Zhao
    Chengshuai Yang
    R. Theodore Smith
    Liang Gao
    Scientific Reports, 13
  • [3] Coded aperture snapshot spectral imaging fundus camera
    Zhao, Ruixuan
    Yang, Chengshuai
    Smith, R. Theodore
    Gao, Liang
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [4] Approximate Message Passing in Coded Aperture Snapshot Spectral Imaging
    Tan, Jin
    Ma, Yanting
    Rueda, Hoover
    Baron, Dror
    Arce, Gonzalo R.
    2015 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2015, : 609 - 613
  • [5] A Survey of Reconstruction Algorithms for Coded Aperture Snapshot Spectral Imaging
    Ma X.-T.
    Wang L.-Z.
    Huang H.
    Jisuanji Xuebao/Chinese Journal of Computers, 2024, 47 (01): : 190 - 212
  • [6] Single disperser design for coded aperture snapshot spectral imaging
    Wagadarikar, Ashwin
    John, Renu
    Willett, Rebecca
    Brady, David
    APPLIED OPTICS, 2008, 47 (10) : B44 - B51
  • [7] Differential coded aperture single-snapshot spectral imaging
    Hlubucek, J.
    Lukes, J.
    Vaclavik, J.
    Zidek, K.
    OPTICS LETTERS, 2022, 47 (09) : 2342 - 2345
  • [8] Reconstruction algorithm of coded aperture spectral imaging based on deep learning
    Jiang Y.-L.
    Zhang J.-F.
    Wu J.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2020, 50 (06): : 2221 - 2228
  • [9] Video rate spectral imaging using a coded aperture snapshot spectral imager
    Wagadarikar, Ashwin A.
    Pitsianis, Nikos P.
    Sun, Xiaobai
    Brady, David J.
    OPTICS EXPRESS, 2009, 17 (08): : 6368 - 6388
  • [10] Off-axis aberration correction for a reflective coded aperture snapshot spectral imager
    Zhao, Xianhong
    Ma, Xu
    OPTICS LETTERS, 2022, 47 (05) : 1202 - 1205