Semiclassical analysis of low and zero energy scattering for one-dimensional Schrodinger operators with inverse square potentials

被引:6
|
作者
Costin, Ovidiu [2 ]
Schlag, Wilhelm [1 ]
Staubach, Wolfgang [3 ]
Tanveer, Saleh [2 ]
机构
[1] Univ Chicago, Chicago, IL 60637 USA
[2] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
[3] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
基金
美国国家科学基金会;
关键词
Schrodinger operators; Scattering matrix; Zero energy scattering; Modified WKB; Inverse square potential;
D O I
10.1016/j.jfa.2008.07.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper studies the scattering matrix S(E; h) of the problem -h(2)psi"(x) + V(x)psi(x) = E psi(x) for positive potentials V is an element of C-infinity(R) with inverse square behavior as x -> +/-infinity. It is shown that each entry takes the form S-ij (E; h) = S-ij((0))(E; h)(1 + h sigma(ij) (E; h)) where S-ij((0))(E; h) is the WKB approximation relatj tive to the modifiedpotential V(x) + n(2)/4 < x >(-2) and the correction terms sigma(ij) satisfy |partial derivative(k)(E)sigma(ij)(E; h| <= CkE-k for all k >= 0 and uniformly in (E, h) is an element of (0, E-0) x (0, h(0)) where E-0, h(0) are small constants. This asymptotic behavior is not universal: if -h(2)partial derivative(2)(x) + V has a zero energy resonance, then S(E: h) exhibits different asymptotic behavior as E -> 0. The resonant case is excluded here due to V > 0. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:2321 / 2362
页数:42
相关论文
共 50 条
  • [1] Semiclassical Low Energy Scattering for One-Dimensional Schrodinger Operators with Exponentially Decaying Potentials
    Costin, Ovidiu
    Donninger, Roland
    Schlag, Wilhelm
    Tanveer, Saleh
    ANNALES HENRI POINCARE, 2012, 13 (06): : 1371 - 1426
  • [2] Semiclassical Low Energy Scattering for One-Dimensional Schrödinger Operators with Exponentially Decaying Potentials
    Ovidiu Costin
    Roland Donninger
    Wilhelm Schlag
    Saleh Tanveer
    Annales Henri Poincaré, 2012, 13 : 1371 - 1426
  • [3] INVERSE SCATTERING THEORY FOR ONE-DIMENSIONAL SCHRODINGER OPERATORS WITH STEPLIKE FINITE-GAP POTENTIALS
    de Monvel, Anne Boutet
    Egorova, Iryna
    Teschl, Gerald
    JOURNAL D ANALYSE MATHEMATIQUE, 2008, 106 (1): : 271 - 316
  • [4] One-dimensional Schrodinger operators with ρ-symmetric zero-range potentials
    Albeverio, S
    Kuzhel, S
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (22): : 4975 - 4988
  • [5] On the absolutely continuous spectrum of one-dimensional Schrodinger operators with square summable potentials
    Deift, P
    Killip, R
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 203 (02) : 341 - 347
  • [6] One-dimensional Schrodinger operators with decaying potentials
    Remling, C
    MATHEMATICAL RESULTS IN QUANTUM MECHANICS, 1999, 108 : 343 - 349
  • [7] One-Dimensional Schrodinger Operators with Complex Potentials
    Derezinski, Jan
    Georgescu, Vladimir
    ANNALES HENRI POINCARE, 2020, 21 (06): : 1947 - 2008
  • [8] Scattering and wave operators for one-dimensional Schrodinger operators with slowly decaying nonsmooth potentials
    Christ, M
    Kiselev, A
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2002, 12 (06) : 1174 - 1234
  • [9] ONE-DIMENSIONAL SCHRODINGER-OPERATORS WITH RANDOM POTENTIALS
    CARMONA, R
    PHYSICA A, 1984, 124 (1-3): : 181 - 187
  • [10] On the Spectra of One-Dimensional Schrodinger Operators With Singular Potentials
    Rabinovich, Vladimir S.
    Barrera-Figueroa, Victor
    Olivera Ramirez, Leticia
    FRONTIERS IN PHYSICS, 2019, 7 (MAR)