Analysis of Time-Fractional Semi-Analytical Solutions of Strong Interacting Internal Waves in Rotating Ocean

被引:0
|
作者
Arshad, Muhammad Sarmad [1 ]
Mardan, Syed Ali [2 ]
Riaz, Muhammad Bilal [2 ]
Altaf, Saira [3 ]
机构
[1] Lahore Garrison Univ, Dept Math, Lahore, Pakistan
[2] Univ Management & Technol, Dept Math, Lahore, Pakistan
[3] Univ Sargodha, Dept Math, Sargodha, Pakistan
来源
关键词
Fractional Ostrovsky Equation; Fractional Gardner's Equation; Laplace Transforms; Nonlinear Fractional Differential equations; Homotopy Perturbation Transform Method; EQUATIONS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, time-fractional Gardner's Ostrovsky equation is considered which represents the shallow water wave phenomena of strong interacting internal Waves with rotational effects. Using the novel perturbation technique, we found the semi-analytical solutions of such obscure phenomena for the rotational parameters introduced in fractional time domain. The Homotopy Perturbation Method is implemented in conjunction with Laplace transformation. Caputo's time fractional derivative has been used to obtain the upcoming solutions on the basis of all previous backgrounds.
引用
收藏
页码:99 / 111
页数:13
相关论文
共 50 条
  • [1] Optimal semi-analytical solutions of time-fractional evolution equations
    Ullah, Saif
    Yaqub, Fareeha
    Munir, Taj
    Zeb, Hussan
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024, : 1995 - 2015
  • [2] Strong Interacting Internal Waves in Rotating Ocean: Novel Fractional Approach
    Veeresha, Pundikala
    Baskonus, Haci Mehmet
    Gao, Wei
    AXIOMS, 2021, 10 (02)
  • [3] Analytical and semi-analytical solutions for time-fractional Cahn-Allen equation
    Khater, Mostafa M. A.
    Bekir, Ahmet
    Lu, Dianchen
    Attia, Raghda A. M.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (03) : 2682 - 2691
  • [4] Semi-Analytical Solutions for Time-Fractional Fisher Equations via New Iterative Method
    Tarate, Shivaji Ashok
    Bhadane, A. P.
    Gaikwad, S. B.
    Kshirsagar, K. A.
    BAGHDAD SCIENCE JOURNAL, 2024, 21 (07) : 2413 - 2424
  • [5] New semi-analytical solutions of the time-fractional Fokker-Planck equation by the neural network method
    Wei, Jia-Li
    Wu, Guo-Cheng
    Liu, Bao-Qing
    Zhao, Zhengang
    OPTIK, 2022, 259
  • [6] Stability analysis of semi-analytical technique for time-fractional Cauchy reaction-diffusion equations
    Ullah, Saif
    Ali, Rahat
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2025, 80 (03): : 199 - 214
  • [7] Numerical Analysis of Time-Fractional Porous Media and Heat Transfer Equations Using a Semi-Analytical Approach
    Nadeem, Muhammad
    Islam, Asad
    Karim, Shazia
    Muresan, Sorin
    Iambor, Loredana Florentina
    SYMMETRY-BASEL, 2023, 15 (07):
  • [8] Semi-Analytical Solutions of the Multi-Dimensional Time-Fractional Solitary Water Wave Equations Using RPS Method
    Kumar Meena, Rakesh
    Kumar, Sushil
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (05) : 6208 - 6221
  • [9] A CLASS OF SEMI-ANALYTICAL SOLUTIONS FOR A ROTATING TOROIDAL PLASMA
    KHATER, AH
    ELSHEIKH, MG
    CALLEBAUT, DK
    ASTROPHYSICS AND SPACE SCIENCE, 1988, 145 (02) : 277 - 286
  • [10] SEMI-ANALYTICAL VIEW OF TIME-FRACTIONAL PDES WITH PROPORTIONAL DELAYS PERTAINING TO INDEX AND MITTAG-LEFFLER MEMORY INTERACTING WITH HYBRID TRANSFORMS
    SHI, L. E. I.
    RASHID, S. A. I. M. A.
    SULTANA, S. O. B. I. A.
    KHALID, A. A. S. M. A.
    AGARWAL, P. R. A. V. E. E. N.
    OSMAN, M. O. H. A. M. E. D. S.
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (04)