A BYZANTINE-RESILIENT DUAL SUBGRADIENT METHOD FOR VERTICAL FEDERATED LEARNING

被引:1
|
作者
Yuan, Kun [1 ]
Wu, Zhaoxian [2 ]
Ling, Qing [2 ]
机构
[1] Alibaba Grp, DAMO Acad, Hangzhou, Peoples R China
[2] Sun Yat Sen Univ, Guangzhou, Guangdong, Peoples R China
关键词
Vertical federated learning; Byzantine-resilience; dual subgradient method;
D O I
10.1109/ICASSP43922.2022.9747270
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Federated learning (FL) raises new challenges on security risks, especially when the FL system involves Byzantine clients that send corrupted or adversarial messages to the central server for deteriorating the training paradigm. While there is an extensive research on robust algorithms for horizontal or data-partitioned FL problems, the exploration in Byzantine-resilient vertical or feature-partitioned FL is quite limited. In this paper, we provide a problem formulation of vertical FL in the presence of Byzantine attacks, and propose a Byzantine-resilient dual subgradient method. Convergence analysis is established, and the influence of the Byzantine clients is also clarified. Numerical experiments show the proposed algorithm is robust to various Byzantine attacks on vertical FL.
引用
收藏
页码:4273 / 4277
页数:5
相关论文
共 50 条
  • [1] Byzantine-resilient Bilevel Federated Learning
    Abbas, Momin
    Zhou, Yi
    Baracaldo, Nathalie
    Samulowitz, Horst
    Ram, Parikshit
    Salonidis, Theodoros
    2024 IEEE 13RD SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP, SAM 2024, 2024,
  • [2] Byzantine-Resilient Federated Learning at Edge
    Tao, Youming
    Cui, Sijia
    Xu, Wenlu
    Yin, Haofei
    Yu, Dongxiao
    Liang, Weifa
    Cheng, Xiuzhen
    IEEE TRANSACTIONS ON COMPUTERS, 2023, 72 (09) : 2600 - 2614
  • [3] Byzantine-Resilient Secure Federated Learning
    So, Jinhyun
    Guler, Basak
    Avestimehr, A. Salman
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2021, 39 (07) : 2168 - 2181
  • [4] Low Complexity Byzantine-Resilient Federated Learning
    Gouissem, A.
    Hassanein, S.
    Abualsaud, K.
    Yaacoub, E.
    Mabrok, M.
    Abdallah, M.
    Khattab, T.
    Guizani, M.
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2025, 20 : 2051 - 2066
  • [5] Byzantine-Resilient High-Dimensional Federated Learning
    Data, Deepesh
    Diggavi, Suhas N.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (10) : 6639 - 6670
  • [6] Byzantine-Resilient Online Federated Learning with Applications to Network Traffic Classification
    Wen, Dacheng
    Li, Yupeng
    Lau, Francis C. M.
    IEEE NETWORK, 2023, 37 (04): : 145 - 152
  • [7] BVDFed: Byzantine-resilient and verifiable aggregation for differentially private federated learning
    Gao, Xinwen
    Fu, Shaojing
    Liu, Lin
    Luo, Yuchuan
    FRONTIERS OF COMPUTER SCIENCE, 2024, 18 (05)
  • [8] Byzantine-Resilient Secure Federated Learning on Low-Bandwidth Networks
    Masuda, Hiroki
    Kita, Kentaro
    Koizumi, Yuki
    Takemasa, Junji
    Hasegawa, Toru
    IEEE ACCESS, 2023, 11 : 51754 - 51766
  • [9] BVDFed: Byzantine-resilient and verifiable aggregation for differentially private federated learning
    Xinwen Gao
    Shaojing Fu
    Lin Liu
    Yuchuan Luo
    Frontiers of Computer Science, 2024, 18
  • [10] CBRFL: A framework for Committee-based Byzantine-Resilient Federated Learning
    Xu, Gang
    Lei, Lele
    Mao, Yanhui
    Li, Zongpeng
    Chen, Xiu-Bo
    Zhang, Kejia
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2025, 238