Crystalline undulator radiation and sub-harmonic bifurcation of system

被引:4
|
作者
Luo Xiao-Hua [1 ,2 ]
He Wei [1 ]
Wu Mu-Ying [3 ]
Shao Ming-Zhu [3 ]
Luo Shi-Yu [3 ]
机构
[1] Chongqing Univ, Sch Elect Engn, Chongqing 400044, Peoples R China
[2] Chongqing Jiaotong Univ, Chongqing 400074, Peoples R China
[3] Dongguan Univ Technol, Coll Elect Engn, Dongguan 523808, Peoples R China
关键词
crystalline undulator radiation; short wavelength laser; Melnikov method; bifurcation; stability; EMISSION;
D O I
10.1088/1674-1056/22/6/064210
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Looking for new light sources, especially short wavelength laser light sources has attracted widespread attention. This paper analytically describes the radiation of a crystalline undulator field by the sine-squared potential. In the classical mechanics and the dipole approximation, the motion equation of a particle is reduced to a generalized pendulum equation with a damping term and a forcing term. The bifurcation behavior of periodic orbits is analyzed by using the Melnikov method and the numerical method, and the stability of the system is discussed. The results show that, in principle, the stability of the system relates to its parameters, and only by adjusting these parameters appropriately can the occurrence of bifurcation be avoided or suppressed.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Crystalline undulator radiation and sub-harmonic bifurcation of system
    罗晓华
    何为
    吴木营
    邵明珠
    罗诗裕
    Chinese Physics B, 2013, 22 (06) : 405 - 408
  • [2] The sub-harmonic bifurcation of Stokes waves
    Buffoni, B
    Dancer, EN
    Toland, JF
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2000, 152 (03) : 241 - 271
  • [3] The Sub-Harmonic Bifurcation of Stokes Waves
    B. Buffoni
    E. N. Dancer
    J. F. Toland
    Archive for Rational Mechanics and Analysis, 2000, 152 : 241 - 271
  • [4] The global bifurcation and chaotic behaviours for the crystalline undulator radiation
    Luo Shi-Yu
    Shao Ming-Zhu
    Luo Xiao-Hua
    ACTA PHYSICA SINICA, 2010, 59 (04) : 2685 - 2690
  • [5] ESTIMATE FOR SUB-HARMONIC DIFFERENCE OF SUB-HARMONIC FUNCTIONS .1.
    KRASICKOVTERNOVSKII, IF
    MATHEMATICS OF THE USSR-SBORNIK, 1977, 31 (02): : 191 - 218
  • [6] ESTIMATES FOR THE SUB-HARMONIC DIFFERENCE OF SUB-HARMONIC FUNCTIONS .2.
    KRASICKOVTERNOVSKII, IF
    MATHEMATICS OF THE USSR-SBORNIK, 1977, 32 (01): : 59 - 97
  • [7] On sub-harmonic bifurcations
    Chaperon, M
    de Medrano, SL
    Samaniego, JL
    COMPTES RENDUS MATHEMATIQUE, 2005, 340 (11) : 827 - 832
  • [8] SUB-HARMONIC TRANSIT RESONANCE
    CHENIS, A
    SOVIET PHYSICS SEMICONDUCTORS-USSR, 1981, 15 (04): : 428 - 431
  • [9] A DRIVEN SUB-HARMONIC OSCILLATOR
    NELSON, JA
    RYAN, WD
    INTERNATIONAL JOURNAL OF ELECTRONICS, 1969, 27 (01) : 75 - &
  • [10] Comments on the sub-harmonic functions
    Szpilrajn, E
    ANNALS OF MATHEMATICS, 1933, 34 : 588 - 594