Complexities of the DNA base excision repair pathway for repair of oxidative DNA damage

被引:110
|
作者
Mitra, S [1 ]
Boldogh, I
Izumi, T
Hazra, TK
机构
[1] Univ Texas, Med Branch, Sealy Ctr Mol Sci, Galveston, TX 77555 USA
[2] Univ Texas, Med Branch, Dept Human Biol Chem & Genet, Galveston, TX 77555 USA
[3] Univ Texas, Med Branch, Dept Microbiol & Immunol, Galveston, TX 77555 USA
关键词
oxidative DNA damage; reactive oxygen species; base excision repair; replication-associated repair; coordination of repair pathway;
D O I
10.1002/em.1070
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Oxidative damage represents the most significant insult to organisms because of continuous production of the reactive oxygen species (ROS) in vivo. Oxidative damage in DNA, a critical target of ROS, is repaired primarily via the base excision repair (BER) pathway which appears to be the simplest among the three excision repair pathways. However, it is now evident that although BER can be carried with four or five enzymes in vitro, a large number of proteins, including some required for nucleotide excision repair (NER), are needed for in vivo repair of oxidative damage. Furthermore, BER in transcribed vs. nontranscribed DNA regions requires distinct sets of proteins, as in the case of NER. We propose an additional complexity in repair of replicating vs. nonreplicating DNA. Unlike DNA bulky adducts, the oxidized base lesions could be incorporated in the nascent DNA strand, repair of which may share components of the mismatch repair process. Distinct enzyme specificities are thus warranted for repair of lesions in the parental vs. nascent DNA strand. Repair synthesis may be carried out by DNA polymerase beta or replicative polymerases delta and epsilon. Thus, multiple subpathways are needed for repairing oxidative DNA damage, and the pathway decision may require coordination of the successive steps in repair. Such coordination includes transfer of the product of a DNA glycosylase to AP-endonuclease, the next enzyme in the pathway. Interactions among proteins in the pathway may also reflect such coordination, characterization of which should help elucidate these subpathways and their in vivo regulation. (C) 2001 Wiley-Liss, Inc.
引用
收藏
页码:180 / 190
页数:11
相关论文
共 50 条
  • [1] BPA Modulates Repair of Oxidative DNA Damage by Base Excision Repair Pathway
    Gassman, N. R.
    Stefanick, D. F.
    Horton, J. K.
    Wilson, S. H.
    ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, 2014, 55 : S56 - S56
  • [2] Oxidative DNA damage and its repair - Base excision repair
    Tudek, B
    MUTATION RESEARCH-FUNDAMENTAL AND MOLECULAR MECHANISMS OF MUTAGENESIS, 2003, 531 (1-2) : 1 - 3
  • [3] Base-excision repair of oxidative DNA damage
    Sheila S. David
    Valerie L. O'Shea
    Sucharita Kundu
    Nature, 2007, 447 : 941 - 950
  • [4] Base-excision repair of oxidative DNA damage
    David, Sheila S.
    O'Shea, Valerie L.
    Kundu, Sucharita
    NATURE, 2007, 447 (7147) : 941 - 950
  • [5] Repair of Oxidative DNA Damage and Cancer: Recent Progress in DNA Base Excision Repair
    Scott, Timothy L.
    Rangaswamy, Suganya
    Wicker, Christina A.
    Izumi, Tadahide
    ANTIOXIDANTS & REDOX SIGNALING, 2014, 20 (04) : 708 - 726
  • [7] Mammalian DNA base excision repair proteins: their interactions and role in repair of oxidative DNA damage
    Izumi, T
    Wiederhold, LR
    Roy, G
    Roy, R
    Jaiswal, A
    Bhakat, KK
    Mitra, S
    Hazra, TK
    TOXICOLOGY, 2003, 193 (1-2) : 43 - 65
  • [8] Oxidative base damage to DNA: specificity of base excision repair enzymes
    Cadet, J
    Bourdat, AG
    D'Ham, C
    Duarte, V
    Gasparutto, D
    Romieu, A
    Ravanat, JL
    MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH, 2000, 462 (2-3) : 121 - 128
  • [9] EXCISION REPAIR OF DNA BASE DAMAGE
    CERUTTI, PA
    LIFE SCIENCES, 1974, 15 (09) : 1567 - 1575
  • [10] DNA Damage Repaired by the Base Excision Repair Pathway Is Epigenetic
    Strauss, Phyllis R.
    Toomire, Kim
    Moore, Stephen P. G.
    FASEB JOURNAL, 2013, 27