Binomial adversarial representation learning for machinery fault feature extraction and diagnosis

被引:2
|
作者
Ma, Liang
Cheng, Yujie
Ding, Yu [1 ]
Zhao, Qin
Wang, Zili
Lu, Chen
机构
[1] Beihang Univ, Inst Reliabil Engn, Beijing 100191, Peoples R China
基金
国家重点研发计划;
关键词
Representation learning; Binomial distribution; Fault feature extraction; Machinery fault diagnosis; NEURAL-NETWORK;
D O I
10.1016/j.asoc.2022.109772
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The quality of feature extraction is a key factor in determining the performance of machinery fault diagnosis. The feature extraction of conventional deep learning-based methods has the disadvantages of uncontrollability and low quality. To overcome these disadvantages, we propose a binomial adversarial representation learning (BARL) method. Considering that the binomial distribution can make the representations have smaller intra-class distances (ICDs) and larger cross-class distances (CCDs), the adversarial learning mechanism and autoencoder are combined to learn representations obeying binomial distributions from raw monitoring signals to extract key features containing machine health information. Two case studies on rolling element bearings and gearboxes are carried out to validate the performance of the proposed method. The results show that the diagnosis accuracy of BARL outperformed comparison methods, especially under the condition of insufficient training data. According to quantitative and qualitative analysis, the representations learned by BARL were proven to have smaller ICDs and larger CCDs than the comparison methods, which illustrates the effectiveness of the proposed method. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Binomial adversarial representation learning for machinery fault feature extraction and diagnosis
    Ma, Liang
    Cheng, Yujie
    Ding, Yu
    Zhao, Qin
    Wang, Zili
    Lu, Chen
    Applied Soft Computing, 2022, 131
  • [2] Sparse representation learning for fault feature extraction and diagnosis of rotating machinery
    Ma, Sai
    Han, Qinkai
    Chu, Fulei
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 232
  • [3] Feature Extraction and Intelligent Fault Diagnosis of Marine Machinery
    Jiang, Jiawei
    Hu, Yihuai
    Chen, Yanzhen
    Yan, Guohua
    JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES, 2024, 12 (01) : 201 - 211
  • [4] Feature Extraction and Intelligent Fault Diagnosis of Marine Machinery
    Jiawei Jiang
    Yihuai Hu
    Yanzhen Chen
    Guohua Yan
    Journal of Vibration Engineering & Technologies, 2024, 12 : 201 - 211
  • [5] A novel generation network using feature fusion and guided adversarial learning for fault diagnosis of rotating machinery
    Meng, Zong
    He, Huihui
    Cao, Wei
    Li, Jimeng
    Cao, Lixiao
    Fan, Jingjing
    Zhu, Meng
    Fan, Fengjie
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 234
  • [6] Sparse-Representation-Network-Based Feature Learning of Vibration Signal for Machinery Fault Diagnosis
    Miao, Mengqi
    Yu, Jianbo
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (05) : 6706 - 6716
  • [7] Deep discriminative sparse representation learning for machinery fault diagnosis
    Yao, Renhe
    Jiang, Hongkai
    Jiang, Wenxin
    Liu, Yunpeng
    Dong, Yutong
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 135
  • [8] Sparse Representation Convolutional Autoencoder for Feature Learning of Vibration Signals and its Applications in Machinery Fault Diagnosis
    Miao, Mengqi
    Sun, Yuanhang
    Yu, Jianbo
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2022, 69 (12) : 13565 - 13575
  • [9] Intelligent fault diagnosis of rotating machinery based on impact feature extraction
    Hu A.
    Sun J.
    Xing L.
    Xiang L.
    Hangkong Dongli Xuebao/Journal of Aerospace Power, 2023, 38 (12): : 2973 - 2981
  • [10] Adaptive feature extraction using sparse coding for machinery fault diagnosis
    Liu, Haining
    Liu, Chengliang
    Huang, Yixiang
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2011, 25 (02) : 558 - 574