Polynomial decay rate of C0 semigroup in Hilbert spaces

被引:0
|
作者
Li, Yan-Fang [1 ]
Xu, Gen-Qi [2 ]
机构
[1] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang, Henan, Peoples R China
[2] Tianjin Univ, Dept Math, Tianjin, Peoples R China
基金
中国国家自然科学基金;
关键词
C-0; semigroup; polynomial stability; Riesz basis; spectrum; ENERGY DECAY; BEAM SYSTEM; STABILITY; STABILIZATION; EQUATIONS;
D O I
10.1080/00036811.2020.1817399
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper, we characterize the polynomial stability ofsemigroupwith generatorAon Hilbert space. LetAhave compact resolvent and there be a sequence of the eigenvectors ofAthat forms a Riesz basis for. By the asymptotic relation of the real part and imaginary part of eigenvalues ofA, we give the optimal decay rate of polynomial stability of. Moreover, we give the zeros distribution of certain equations. As an application, we illustrate our general results by an acoustical system.
引用
收藏
页码:2636 / 2651
页数:16
相关论文
共 50 条
  • [1] On embeddings of C0(K) spaces into C0(L, X) spaces
    Candido, Leandro
    STUDIA MATHEMATICA, 2016, 232 (01) : 1 - 6
  • [2] Production and decay of Ωc0
    Aubert, B.
    Bona, M.
    Boutigny, D.
    Karyotakis, Y.
    Lees, J. P.
    Poireau, V.
    Prudent, X.
    Tisserand, V.
    Zghiche, A.
    Garra Tico, J.
    Grauges, E.
    Lopez, L.
    Palano, A.
    Eigen, G.
    Ofte, I.
    Stugu, B.
    Sun, L.
    Abrams, G. S.
    Battaglia, M.
    Brown, D. N.
    Button-Shafer, J.
    Cahn, R. N.
    Groysman, Y.
    Jacobsen, R. G.
    Kadyk, J. A.
    Kerth, L. T.
    Kolomensky, Yu. G.
    Kukartsev, G.
    Pegna, D. Lopes
    Lynch, G.
    Mir, L. M.
    Orimoto, T. J.
    Pripstein, M.
    Roe, N. A.
    Ronan, M. T.
    Tackmann, K.
    Wenzel, W. A.
    Sanchez, P. del Amo
    Hawkes, C. M.
    Watson, A. T.
    Held, T.
    Koch, H.
    Lewandowski, B.
    Pelizaeus, M.
    Schroeder, T.
    Steinke, M.
    Cottingham, W. N.
    Walker, D.
    Asgeirsson, D. J.
    Cuhadar-Donszelmann, T.
    PHYSICAL REVIEW LETTERS, 2007, 99 (06)
  • [3] The Banach spaces l∞(c0) and c0(l∞) are not isomorphic
    Cembranos, Pilar
    Mendoza, Jose
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 367 (02) : 461 - 463
  • [4] Spaces of operators and c0
    Lewis, P
    STUDIA MATHEMATICA, 2001, 145 (03) : 213 - 218
  • [5] Measurement of the decay rate of Ξc0→pK-K-π+ relative to Ξc0→Ξ-π+ -: art. no. 052004
    Danko, I
    Cronin-Hennessy, D
    Park, CS
    Park, W
    Thayer, JB
    Thorndike, EH
    Coan, TE
    Gao, YS
    Liu, F
    Stroynowski, R
    Artuso, M
    Boulahouache, C
    Blusk, S
    Dambasuren, E
    Dorjkhaidav, O
    Mountain, R
    Muramatsu, H
    Nandakumar, R
    Skwarnicki, T
    Stone, S
    Wang, JC
    Mahmood, AH
    Csorna, SE
    Bonvicini, G
    Cinabro, D
    Dubrovin, M
    Bornheim, A
    Lipeles, E
    Pappas, SP
    Shapiro, A
    Sun, WM
    Weinstein, AJ
    Briere, RA
    Chen, GP
    Ferguson, T
    Tatishvili, G
    Vogel, H
    Watkins, ME
    Adam, NE
    Alexander, JP
    Berkelman, K
    Boisvert, V
    Cassel, DG
    Duboscq, JE
    Ecklund, KM
    Ehrlich, R
    Galik, RS
    Gibbons, L
    Gittelman, B
    Gray, SW
    PHYSICAL REVIEW D, 2004, 69 (05):
  • [6] Continuous maps induced by embeddings of C0(K)spaces into C0(S, X)spaces
    Galego, Eloi Medina
    Rincon-Villamizar, Michael A.
    MONATSHEFTE FUR MATHEMATIK, 2018, 186 (01): : 37 - 47
  • [7] Copies of c0(Γ) and l∞(Γ)/c0(Γ) in quotients of Banach spaces with applications to Orlicz and Marcinkiewicz spaces
    Plichko, Anatolij
    Wojtowicz, Marek
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2007, 18 (02): : 251 - 268
  • [8] Determining c0 in C(K) spaces
    Argyros, SA
    Kanellopoulos, V
    FUNDAMENTA MATHEMATICAE, 2005, 187 (01) : 61 - 93
  • [9] On the polynomial numerical index of the real spaces c0, l1 and l∞
    Kim, Sung Guen
    Martin, Miguel
    Meri, Javier
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 337 (01) : 98 - 106
  • [10] Functional calculus and representations of C0(C) on a Hilbert module
    Kucerovsky, D
    QUARTERLY JOURNAL OF MATHEMATICS, 2002, 53 : 467 - 477