Bacterial Mg2+ Homeostasis, Transport, and Virulence

被引:196
|
作者
Groisman, Eduardo A. [1 ,2 ,3 ]
Hollands, Kerry [1 ,2 ,3 ]
Kriner, Michelle A. [1 ,3 ]
Lee, Eun-Jin [1 ,2 ,3 ,4 ]
Park, Sun-Yang [1 ,2 ,3 ]
Pontes, Mauricio H. [1 ,3 ]
机构
[1] Yale Univ, Sch Med, Dept Microbial Pathogenesis, Boyer Ctr Mol Med, New Haven, CT 06536 USA
[2] Yale Univ, Sch Med, Boyer Ctr Mol Med, Howard Hughes Med Inst, New Haven, CT 06536 USA
[3] Yale Microbial Divers Inst, West Haven, CT 06516 USA
[4] Kyung Hee Univ, Coll Life Sci, Dept Genet Engn, Yongin 446701, South Korea
来源
关键词
ATP; CorA; gene regulation; lipopolysaccharide; MgtA; MgtB; MgtE; PhoP/PhoQ; 2-COMPONENT REGULATORY SYSTEM; P-TYPE ATPASE; SALMONELLA-TYPHIMURIUM; MAGNESIUM TRANSPORT; ESCHERICHIA-COLI; GENE-EXPRESSION; PHOP-PHOQ; CRYSTAL-STRUCTURE; TRANSCRIPTION ATTENUATION; SIGNAL-TRANSDUCTION;
D O I
10.1146/annurev-genet-051313-051025
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Organisms must maintain physiological levels of Mg2+ because this divalent cation is critical for the stabilization of membranes and ribosomes, for the neutralization of nucleic acids, and as a cofactor in a variety of enzymatic reactions. In this review, we describe the mechanisms that bacteria utilize to sense the levels of Mg2+ both outside and inside the cytoplasm. We examine how bacteria achieve Mg2+ homeostasis by adjusting the expression and activity of Mg2+ transporters and by changing the composition of their cell envelope. We discuss the connections that exist between Mg2+ sensing, Mg2+ transport, and bacterial virulence. Additionally, we explore the logic behind the fact that bacterial genomes encode multiple Mg2+ transporters and distinct sensing systems for cytoplasmic and extracytoplasmic Mg2+. These analyses may be applicable to the homeostatic control of other cations.
引用
收藏
页码:625 / 646
页数:22
相关论文
共 50 条
  • [1] Evolution of a Bacterial Regulon Controlling Virulence and Mg2+ Homeostasis
    Perez, J. Christian
    Shin, Dongwoo
    Zwir, Igor
    Latifi, Tammy
    Hadley, Tricia J.
    Groisman, Eduardo A.
    PLOS GENETICS, 2009, 5 (03):
  • [2] Mg2+ homeostasis and transport in cyanobacteria - at the crossroads of bacterial and chloroplast Mg2+ import
    Pohland, Anne-Christin
    Schneider, Dirk
    BIOLOGICAL CHEMISTRY, 2019, 400 (10) : 1289 - 1301
  • [3] Cellular Mg2+ transport and homeostasis:: An overview
    Kolisek, Martin
    Schweyen, Rudolf J.
    Schweigel, Monika
    NEW PERSPECTIVES IN MAGNESIUM RESEARCH: NUTRITION AND HEALTH, 2007, : 21 - +
  • [4] Hormonal regulation of Mg2+ transport and homeostasis in eukaryotic cells
    Romani, AMP
    Maguire, ME
    BIOMETALS, 2002, 15 (03) : 271 - 283
  • [5] Hormonal regulation of Mg2+ transport and homeostasis in eukaryotic cells
    Andrea M.P. Romani
    Michael E. Maguire
    Biometals, 2002, 15 : 271 - 283
  • [6] Mg2+-dependent gating of bacterial MgtE channel underlies Mg2+ homeostasis
    Hattori, Motoyuki
    Iwase, Norihiko
    Furuya, Noritaka
    Tanaka, Yoshiki
    Tsukazaki, Tomoya
    Ishitani, Ryuichiro
    Maguire, Michael E.
    Ito, Koichi
    Maturana, Andres
    Nureki, Osamu
    EMBO JOURNAL, 2009, 28 (22): : 3602 - 3612
  • [7] Mg2+ transport in the kidney
    Satoh, J
    Romero, MF
    BIOMETALS, 2002, 15 (03) : 285 - 295
  • [8] Mg2+ transport in the kidney
    Jun-ichi Satoh
    Michael F. Romero
    Biometals, 2002, 15 : 285 - 296
  • [9] The Bacterial Transcription Termination Factor Rho Coordinates Mg2+ Homeostasis with Translational Signals
    Kriner, Michelle A.
    Groisman, Eduardo A.
    JOURNAL OF MOLECULAR BIOLOGY, 2015, 427 (24) : 3834 - 3849
  • [10] Mg2+ homeostasis and avoidance of metal toxicity
    Chamnongpol, S
    Groisman, EA
    MOLECULAR MICROBIOLOGY, 2002, 44 (02) : 561 - 571