A SIMPLE PROOF OF OPPENHEIM'S DOUBLE INEQUALITY RELATING TO THE COSINE AND SINE FUNCTIONS

被引:8
|
作者
Qi, Feng [1 ]
Luo, Qiu-Ming [2 ]
Guo, Bai-Ni [3 ]
机构
[1] Inner Mongolia Univ Nationalities, Coll Math, Tongliao City 028043, Inner Mongolia, Peoples R China
[2] Chongqing Normal Univ, Dept Math, Chongqing 401331, Peoples R China
[3] Henan Polytech Univ, Sch Math & Informat, Jiaozuo City 454010, Henan Province, Peoples R China
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2012年 / 6卷 / 04期
关键词
Simple proof; Oppenheim's double inequality; cosine function; sine function; monotonicity; JORDANS INEQUALITY;
D O I
10.7153/jmi-06-63
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper, the authors provide a simple proof of Oppenheim's double inequality relating to the cosine and sine functions. In passing, the authors survey this topic.
引用
收藏
页码:645 / 654
页数:10
相关论文
共 32 条
  • [1] A SIMPLE PROOF OF IVADY DOUBLE INEQUALITY
    Kobayashi, Naoki
    Nishizawa, Yusuke
    Okazaki, Kenshiroh
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2023, 14 (01): : 16 - 20
  • [2] A SIMPLE PROOF OF LIVINGSTON INEQUALITY FOR CARATHEODORY FUNCTIONS
    DELSARTE, P
    GENIN, Y
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 107 (04) : 1017 - 1020
  • [3] A simple proof of Bell's inequality
    Maccone, Lorenzo
    AMERICAN JOURNAL OF PHYSICS, 2013, 81 (11) : 854 - 859
  • [4] A new simple proof of Wilker's inequality
    Ling, Z
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2005, 8 (04): : 749 - 750
  • [5] A Simple Elementary Proof of Hilbert's Inequality
    Ullrich, David C.
    AMERICAN MATHEMATICAL MONTHLY, 2013, 120 (02): : 161 - 164
  • [6] A simple proof of generalized Alzer's inequality
    Ume, JS
    Liu, ZQ
    McDonald, JN
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2004, 35 (08): : 969 - 971
  • [7] A simple proof of Schmidt–Summerer’s inequality
    Oleg N. German
    Nikolay G. Moshchevitin
    Monatshefte für Mathematik, 2013, 170 : 361 - 370
  • [8] Proof of an open inequality with double power-exponential functions
    Miyagi, Mitsuhiro
    Nishizawa, Yusuke
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [9] A CONCISE PROOF OF A DOUBLE INEQUALITY INVOLVING THE EXPONENTIAL AND LOGARITHMIC FUNCTIONS
    Shi, Huan-Nan
    Wu, Shan-He
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2019, (41): : 284 - 289
  • [10] Proof of an open inequality with double power-exponential functions
    Mitsuhiro Miyagi
    Yusuke Nishizawa
    Journal of Inequalities and Applications, 2013