Prediction of non-linear time-variant dynamic crop model using bayesian methods

被引:0
|
作者
Mansouri, M. [1 ]
Dumont, B. [1 ]
Destain, M. -F. [1 ]
机构
[1] Univ Liege GxABT, Dept Sci & Technol Environm, B-5030 Gembloux, Belgium
来源
关键词
crop model; variational filter; extended Kalman filter; particle filter; LAI; soil moisture prediction; PARAMETER-ESTIMATION; WATER;
D O I
暂无
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
This work addresses the problem of predicting a non-linear time-variant leaf area index and soil moisture model (LSM) using state estimation. These techniques include the extended Kalman filter (EKF), particle filter (PF) and the more recently developed technique, variational filter (VF). In the comparative study, the state variables (the leaf-area index LAI, the volumetric water content. of the layer 1, HUR1 and the volumetric water content of the layer 2, HUR2) are estimated from noisy measurements of these variables, and the various estimation techniques are compared by computing the estimation root mean square error with respect to the noise-free data. The results show that VF provides a significant improvement over EKF and PF.
引用
收藏
页码:507 / 513
页数:7
相关论文
共 50 条
  • [1] APPROXIMATING NON-LINEAR INDUCTORS USING TIME-VARIANT LINEAR FILTERS
    Moro, Giulio
    McPherson, Andrew P.
    DAFX-15: PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON DIGITAL AUDIO EFFECTS, 2015, : 249 - 256
  • [2] A Time-Variant and Non-Linear Model of Opinion Formation in Social Networks
    Sotiropoulos, Dionisios N.
    Bilanakos, Christos
    Giaglis, George M.
    PROCEEDINGS OF THE 2015 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM 2015), 2015, : 872 - 879
  • [3] Opinion formation in social networks: a time-variant and non-linear model
    Dionisios N. Sotiropoulos
    Christos Bilanakos
    George M. Giaglis
    Complex & Intelligent Systems, 2016, 2 (4) : 269 - 284
  • [4] Opinion formation in social networks: a time-variant and non-linear model
    Sotiropoulos, Dionisios N.
    Bilanakos, Christos
    Giaglis, George M.
    COMPLEX & INTELLIGENT SYSTEMS, 2016, 2 (04) : 269 - 284
  • [5] Time-variant equalization using a novel non-linear adaptive structure
    Cowan, CFN
    Semnani, S
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 1998, 12 (02) : 195 - 206
  • [6] TIME-VARIANT NON-LINEAR FUNCTIONAL RUNOFF MODEL FOR REAL-TIME FORECASTING
    PATRY, GG
    MARINO, MA
    JOURNAL OF HYDROLOGY, 1983, 66 (1-4) : 227 - 244
  • [7] Simulation of a non-linear, time-variant circuit using the Haar wavelet transform
    Roumeliotis, Georgios G.
    Desmet, Jan
    Knockaert, Jos
    IET SCIENCE MEASUREMENT & TECHNOLOGY, 2022, 16 (07) : 389 - 399
  • [8] Non-linear modeling of broiler growth using a time-variant parameter estimation method
    Van Buggenhout, S
    Aerts, JM
    Vranken, E
    Berckmans, D
    TRANSACTIONS OF THE ASAE, 2004, 47 (05): : 1757 - 1764
  • [9] Linear and non-linear bayesian regression methods for software fault prediction
    Singh, Rohit
    Rathore, Santosh Singh
    INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2022, 13 (04) : 1864 - 1884
  • [10] Linear and non-linear bayesian regression methods for software fault prediction
    Rohit Singh
    Santosh Singh Rathore
    International Journal of System Assurance Engineering and Management, 2022, 13 : 1864 - 1884