Similarity-preserving hashing based on deep neural networks for large-scale image retrieval

被引:20
|
作者
Wang, Xiaofei [1 ]
Lee, Feifei [1 ]
Chen, Qiu [1 ,2 ]
机构
[1] Univ Shanghai Sci & Technol, Sch Opt Elect & Comp Engn, Shanghai, Peoples R China
[2] Kogakuin Univ, Grad Sch Engn, Elect Engn & Elect, Tokyo, Japan
关键词
Large-scale image retrieval; Similarity comparison; Deep learning; Multi-label learning; Quantization error; QUANTIZATION; SHAPE;
D O I
10.1016/j.jvcir.2019.03.024
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Similarity-preserving hashing has become the mainstream of approximate nearest neighbor (ANN) search for large-scale image retrieval. Recent research shows that deep neural networks can produce efficient feature representation. Most existing deep hashing schemes simply utilize the middle-layer features of the deep neural networks to measure the similarity between query images and database images. However, these visual features are suboptimal for discriminating the semantic information of images, especially for complex images that contain multiple objects. In this paper, a deep framework is employed to learn multi-level non-linear transformations to obtain advanced image features, and then we combine these intermediate features and top layer visual information to implement image retrieval. Three criterions are enforced on these compact codes: (1) minimal quantization loss; (2) evenly distributed binary; (3) independent bits. The experimental results on five public large-scale datasets demonstrate the superiority of our method compared with several other state-of-the-art methods. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:260 / 271
页数:12
相关论文
共 50 条
  • [1] Similarity-Preserving Linkage Hashing for Online Image Retrieval
    Lin, Mingbao
    Ji, Rongrong
    Chen, Shen
    Sun, Xiaoshuai
    Lin, Chia-Wen
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 5289 - 5300
  • [2] Asymmetric similarity-preserving discrete hashing for image retrieval
    Xiuxiu Ren
    Xiangwei Zheng
    Lizhen Cui
    Gang Wang
    Huiyu Zhou
    Applied Intelligence, 2023, 53 : 12114 - 12131
  • [3] Video Retrieval with Similarity-Preserving Deep Temporal Hashing
    Shen, Ling
    Hong, Richang
    Zhang, Haoran
    Tian, Xinmei
    Wang, Meng
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2019, 15 (04)
  • [4] Asymmetric similarity-preserving discrete hashing for image retrieval
    Ren, Xiuxiu
    Zheng, Xiangwei
    Cui, Lizhen
    Wang, Gang
    Zhou, Huiyu
    APPLIED INTELLIGENCE, 2023, 53 (10) : 12114 - 12131
  • [5] Large-Scale Remote Sensing Image Retrieval by Deep Hashing Neural Networks
    Li, Yansheng
    Zhang, Yongjun
    Huang, Xin
    Zhu, Hu
    Ma, Jiayi
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (02): : 950 - 965
  • [6] Semantic Hierarchy Preserving Deep Hashing for Large-Scale Image Retrieval
    Ming Zhang
    Zhe, Xuefei
    Le Ou-Yang
    Chen, Shifeng
    Hong Yan
    PROCEEDINGS OF 17TH INTERNATIONAL CONFERENCE ON MACHINE VISION APPLICATIONS (MVA 2021), 2021,
  • [7] Deep Hashing for Large-scale Image Retrieval
    Li Mengting
    Liu Jun
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 10940 - 10944
  • [8] Deep Neighborhood Structure-Preserving Hashing for Large-Scale Image Retrieval
    Qin, Qibing
    Xie, Kezhen
    Zhang, Wenfeng
    Wang, Chengduan
    Huang, Lei
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 1881 - 1893
  • [9] Unsupervised Deep Hashing With Fine-Grained Similarity-Preserving Contrastive Learning for Image Retrieval
    Cao, Hu
    Huang, Lei
    Nie, Jie
    Wei, Zhiqiang
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (05) : 4095 - 4108
  • [10] Deep semantic preserving hashing for large scale image retrieval
    Masoumeh Zareapoor
    Jie Yang
    Deepak Kumar Jain
    Pourya Shamsolmoali
    Neha Jain
    Surya Kant
    Multimedia Tools and Applications, 2019, 78 : 23831 - 23846