Differentially Private Deep Learning for Load Forecasting on Smart Grid

被引:20
|
作者
Soykan, Elif Ustundag [1 ]
Bilgin, Zeki [1 ]
Ersoy, Mehmet Aldf [1 ]
Tomur, Emrah [1 ]
机构
[1] Ericsson Res, Istanbul, Turkey
关键词
IoT Privacy; Load Forecasting; Smart Grid; Differential Privacy; Tensorflow; Deep Learning; LSTM;
D O I
10.1109/gcwkshps45667.2019.9024520
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Load forecasting is vital for a reliable and sustainable smart grid as it is used to predict the demand and make price adjustment accordingly. Electric consumption data which is gathered from IoT devices like smart meter or smart appliances is a key input to improve the accuracy of the forecasting task. However, this data can leak private information of the householders as the consumption data reflects the behavioral patterns of the individuals. Providing privacy for the data without compromising the utility of the forecast is a challenging problem and this is where the differential privacy comes in to play. In this work, we present a practical implementation of the privacy preserving load forecasting with differential privacy techniques using Tensorflow Privacy library. We show that privacy guarantee for the data can be achieved to varying degrees with a tolerable degradation in the forecast results. We provide privacy-utility tradeoff values in our experiments for different privacy levels.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Optimization and research of smart grid load forecasting model based on deep learning
    Zhang, Dong
    INTERNATIONAL JOURNAL OF LOW-CARBON TECHNOLOGIES, 2024, 19 : 594 - 602
  • [2] Short Term Load Forecasting based on Deep Learning for Smart Grid Applications
    Hafeez, Ghulam
    Javaid, Nadeem
    Ullah, Safeer
    Iqbal, Zafar
    Khan, Mahnoor
    Rehman, Aziz Ur
    Ziaullah
    INNOVATIVE MOBILE AND INTERNET SERVICES IN UBIQUITOUS COMPUTING, IMIS-2018, 2019, 773 : 276 - 288
  • [3] Enhancing smart grid reliability with advanced load forecasting using deep learning
    Jasmine, J.
    Nisha, M. Germin
    Prasad, Rajesh
    ELECTRICAL ENGINEERING, 2025,
  • [4] An Integrated Model of Deep Learning and Heuristic Algorithm for Load Forecasting in Smart Grid
    Alghamdi, Hisham
    Hafeez, Ghulam
    Ali, Sajjad
    Ullah, Safeer
    Khan, Muhammad Iftikhar
    Murawwat, Sadia
    Hua, Lyu-Guang
    MATHEMATICS, 2023, 11 (21)
  • [5] Hourly Electricity Load Forecasting in Smart Grid Using Deep Learning Techniques
    Khan, Abdul Basit Majeed
    Javaid, Nadeem
    Nazeer, Orooj
    Zahid, Maheen
    Akbar, Mariam
    Khan, Majid Hameed
    INNOVATIVE MOBILE AND INTERNET SERVICES IN UBIQUITOUS COMPUTING, IMIS-2019, 2020, 994 : 185 - 196
  • [6] Review on smart grid load forecasting for smart energy management using machine learning and deep learning techniques
    Biswal, Biswajit
    Deb, Subhasish
    Datta, Subir
    Ustun, Taha Selim
    Cali, Umit
    ENERGY REPORTS, 2024, 12 : 3654 - 3670
  • [7] Electric load forecasting based on deep learning and optimized by heuristic algorithm in smart grid
    Hafeez, Ghulam
    Alimgeer, Khurram Saleem
    Khan, Imran
    APPLIED ENERGY, 2020, 269
  • [8] A Deep Learning Method for Short-Term Residential Load Forecasting in Smart Grid
    Hong, Ye
    Zhou, Yingjie
    Li, Qibin
    Xu, Wenzheng
    Zheng, Xiujuan
    IEEE ACCESS, 2020, 8 (08): : 55785 - 55797
  • [9] Short-Term Load Forecasting Method Based on Deep Reinforcement Learning for Smart Grid
    Guo, Wei
    Zhang, Kai
    Wei, Xinjie
    Liu, Mei
    MOBILE INFORMATION SYSTEMS, 2021, 2021
  • [10] Smart grid power load type forecasting: research on optimization methods of deep learning models
    Sun, Huadong
    Ren, Yonghao
    Wang, Shanshan
    Zhao, Bing
    Yin, Rui
    FRONTIERS IN ENERGY RESEARCH, 2023, 11