Operational regimes and physics present in optoelectronic tweezers

被引:87
|
作者
Valley, Justin K. [1 ]
Jamshidi, Arash [1 ]
Ohta, Aaron T. [1 ]
Hsu, Hsan-Yin [1 ]
Wu, Ming C. [1 ]
机构
[1] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley Sensor & Actuator Ctr, Berkeley, CA 94720 USA
基金
美国国家卫生研究院;
关键词
dielectrophoresis (DEP); electrothermal (ET) flow; light-induced ac electroosmosis (LACE); optoelectronic tweezers (OET);
D O I
10.1109/JMEMS.2008.916335
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Optoelectronic tweezers (OET) are a powerful light-based technique for the manipulation of micro- and nanoscopic particles. In addition to an optically patterned dielectrophoresis (DEP) force, other light-induced electrokinetic and thermal effects occur in the OET device. In this paper, we present a comprehensive theoretical and experimental investigation of various fluidic, optical, and electrical effects present during OET operation. These effects include DEP, light-induced ac electroosmosis, eiectrothermal flow, and buoyancy-driven How. We present finite-element modeling of these effects to establish the dominant mode for a given set of device parameters and bias conditions. These results are confirmed experimentally and present a comprehensive outline of the operational regimes of the OET device.
引用
收藏
页码:342 / 350
页数:9
相关论文
共 50 条
  • [1] ECH physics and new operational regimes on TCV
    Moret, JM
    Ahmed, SM
    Alberti, S
    Andrebe, Y
    Appert, K
    Arnoux, G
    Behn, R
    Blanchard, P
    Bosshard, P
    Camenen, Y
    Chavan, R
    Coda, S
    Condrea, I
    Degeling, A
    Duval, BP
    Fasel, D
    Fasoli, A
    Favez, JY
    Goodman, T
    Henderson, M
    Hofmann, F
    Hogge, JP
    Horacek, J
    Isoz, P
    Joye, B
    Karpushov, A
    Klimanov, I
    Lister, JB
    Llobet, X
    Madeira, T
    Magnin, JC
    Manini, A
    Marlétaz, B
    Marmillod, P
    Martin, Y
    Martynov, A
    Mayor, JM
    Mlynar, J
    Nelson-Melby, E
    Nikkola, P
    Paris, PJ
    Perez, A
    Peysson, Y
    Pitts, RA
    Pochelon, A
    Porte, L
    Sauter, O
    Scarabosio, A
    Scavino, E
    Seo, SH
    PLASMA PHYSICS AND CONTROLLED FUSION, 2002, 44 : B85 - B97
  • [2] Optoelectronic tweezers
    Kishan Dholakia
    Nature Materials, 2005, 4 : 579 - 580
  • [3] Optoelectronic tweezers
    Wu, Ming C.
    NATURE PHOTONICS, 2011, 5 (06) : 322 - 324
  • [4] Optoelectronic tweezers
    Ming C Wu
    Nature Photonics, 2011, 5 : 322 - 324
  • [5] Optoelectronic integrated tweezers
    McGreehin, S
    O'Faolin, L
    Roberts, J
    Krauss, T
    Dholakia, KS
    OPTICAL TRAPPING AND OPTICAL MICROMANIPULATION, 2004, 5514 : 55 - 61
  • [6] Optofluidics and optoelectronic tweezers
    Jamshidi, Arash
    Ohta, Aaron T.
    Valley, Justin K.
    Hsu, Hsan-Yin
    Neale, Steven L.
    Wu, Ming C.
    MEMS, MOEMS, AND MICROMACHING III, 2008, 6993
  • [7] Micromanipulation - Optoelectronic tweezers
    Dholakia, K
    NATURE MATERIALS, 2005, 4 (08) : 579 - 580
  • [8] Antifouling coatings for optoelectronic tweezers
    Lau, Aldrich N. K.
    Ohta, Aaron T.
    Phan, Huan L.
    Hsu, Hsan-Yin
    Jamshidi, Arash
    Chiou, Pei-Yu
    Wu, Ming C.
    LAB ON A CHIP, 2009, 9 (20) : 2952 - 2957
  • [9] Optoelectronic tweezers - Organizing nanowires
    Rogers, John A.
    NATURE PHOTONICS, 2008, 2 (02) : 69 - 70
  • [10] Optoelectronic tweezers for medical diagnostics
    Kremer, Clemens
    Neale, Steven
    Menachery, Anoop
    Barrett, Mike
    Cooper, Jonathan M.
    FRONTIERS IN BIOLOGICAL DETECTION: FROM NANOSENSORS TO SYSTEMS IV, 2012, 8212