Randomized benchmarking with gate-dependent noise

被引:71
|
作者
Wallnnan, Joel J. [1 ,2 ]
机构
[1] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[2] Univ Waterloo, Dept Appl Math, Waterloo, ON N2L 3G1, Canada
来源
QUANTUM | 2018年 / 2卷
关键词
QUANTUM; FIDELITY;
D O I
10.22331/q-2018-01-29-47
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyze randomized benchmarking for arbitrary gate-dependent noise and prove that the exact impact of gate-dependent noise can be described by a single perturbation term that decays exponentially with the sequence length. That is, the exact behavior of randomized benchmarking under general gate-dependent noise converges exponentially to a true exponential decay of exactly the same form as that predicted by previous analysis for gate-independent noise. Moreover, we show that the operational meaning of the decay parameter for gate-dependent noise is essentially unchanged, that is, we show that it quantifies the average fidelity of the noise between ideal gates. We numerically demonstrate that our analysis is valid for strongly gate-dependent noise models. We also show why alternative analyses do not provide a rigorous justification for the empirical success of randomized benchmarking with gate-dependent noise.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Stability of Classical Shadows under Gate-Dependent Noise
    Brieger, Raphael
    Heinrich, Markus
    Roth, Ingo
    Kliesch, Martin
    PHYSICAL REVIEW LETTERS, 2025, 134 (09)
  • [2] Gate-dependent vacancy diffusion in graphene
    Babar, Rohit
    Kabir, Mukul
    PHYSICAL REVIEW B, 2018, 98 (07)
  • [3] Gate-Dependent Electronic Raman Scattering in Graphene
    Riccardi, E.
    Measson, M. -A.
    Cazayous, M.
    Sacuto, A.
    Gallais, Y.
    PHYSICAL REVIEW LETTERS, 2016, 116 (06)
  • [4] Gate-dependent magnetoresistance phenomena in carbon nanotubes
    Fedorov, G
    Lassagne, B
    Sagnes, M
    Raquet, B
    Broto, JM
    Triozon, F
    Roche, S
    Flahaut, E
    PHYSICAL REVIEW LETTERS, 2005, 94 (06)
  • [5] Randomized Benchmarking as Convolution: Fourier Analysis of Gate Dependent Errors
    Merkel, Seth T.
    Pritchett, Emily J.
    Fong, Bryan H.
    QUANTUM, 2021, 5 : 1 - 15
  • [6] Gate-Dependent Orbital Magnetic Moments in Carbon Nanotubes
    Jespersen, T. S.
    Grove-Rasmussen, K.
    Flensberg, K.
    Paaske, J.
    Muraki, K.
    Fujisawa, T.
    Nygard, J.
    PHYSICAL REVIEW LETTERS, 2011, 107 (18)
  • [7] Gate-dependent photoconductivity of single layer graphene grafted with metalloporphyrin molecules
    Choi, M. S.
    Lee, D. J.
    Lee, S. J.
    Hwang, D. H.
    Lee, J. H.
    Aoki, N.
    Ochiai, Y.
    Kim, H. -J.
    Whang, D.
    Kim, S.
    Hwang, S. W.
    APPLIED PHYSICS LETTERS, 2012, 100 (16)
  • [8] Gate-dependent pseudospin mixing in graphene/boron nitride moiré superlattices
    Zhiwen Shi
    Chenhao Jin
    Wei Yang
    Long Ju
    Jason Horng
    Xiaobo Lu
    Hans A. Bechtel
    Michael C. Martin
    Deyi Fu
    Junqiao Wu
    Kenji Watanabe
    Takashi Taniguchi
    Yuanbo Zhang
    Xuedong Bai
    Enge Wang
    Guangyu Zhang
    Feng Wang
    Nature Physics, 2014, 10 : 743 - 747
  • [9] Gate-dependent spin-orbit coupling in multielectron carbon nanotubes
    Jespersen T.S.
    Grove-Rasmussen K.
    Paaske J.
    Muraki K.
    Fujisawa T.
    Nygård J.
    Flensberg K.
    Nature Physics, 2011, 7 (4) : 348 - 353
  • [10] Importance of the Gate-Dependent Polarization Charge on the Operation of GaN HEMTs
    Ashok, Ashwin
    Vasileska, Dragica
    Goodnick, Stephen M.
    Hartin, Olin L.
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2009, 56 (05) : 998 - 1006