Why are Hot Holes Easier to Extract than Hot Electrons from Methylammonium Lead Iodide Perovskite?

被引:73
|
作者
Dursun, Ibrahim [1 ,2 ]
Maity, Partha [1 ]
Yin, Jun [1 ]
Turedi, Bekir [1 ,2 ]
Zhumekenov, Ayan A. [1 ,2 ]
Lee, Kwang Jae [1 ,2 ]
Mohammed, Omar F. [1 ]
Bakr, Osman M. [1 ,2 ]
机构
[1] KAUST, Div Phys Sci & Engn PSE, Thuwal 23955, Saudi Arabia
[2] KAUST, Div Phys Sci & Engn PSE, KAUST Catalysis Ctr KCC, Thuwal 23955, Saudi Arabia
关键词
carrier extraction; carrier temperature; density functional theory; halide perovskites; hot carriers; INTERFACIAL CHARGE-TRANSFER; FREE-CARRIERS; HIGHLY EFFICIENT; THIN-FILMS; TRANSPORT; ENERGY; NANOCRYSTALS; CH3NH3PBI3; EMISSION; EXCITONS;
D O I
10.1002/aenm.201900084
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Charge-carriers photoexcited above a semiconductor's bandgap rapidly thermalize to the band-edge. The cooling of these difficult to collect "hot" carriers caps the available photon energy that solar cells-including efficient perovskite solar cells-may utilize. Here, the dynamics and efficiency of hot carrier extraction from MAPbI(3) (MA = methylammonium) perovskite by spiro-OMeTAD (a hole-transporting layer) and TiO2 (an electron-transporting layer) are investigated and explained using both ultrafast electronic spectroscopy and theoretical modeling. Time-resolved spectroscopy reveals a quasi-equilibrium distribution of hot carriers forming upon excess-energy excitation of the perovskite-a distribution largely unaffected by the presence of TiO2. In contrast, the quasi-equilibrium distribution of hot carriers is virtually nonexistent when spiro-OMeTAD is present, which is indicative of efficient hot hole extraction at the interface of MAPbI(3). Density functional theory calculations predict that deep energy-levels of MAPbI(3) exhibit electronically delocalized character, with significant overlap with the localized valence band charge of the spiro-OMeTAD molecules lying on the surface of MAPbI(3). Consequently, hot holes are easily extracted from the deep energy-levels of MAPbI(3) by spiro-OMeTAD. These findings uncover the origins of efficient hot hole extraction in perovskites and offer a practical blueprint for optimizing solar cell interlayers to enable hot carrier utilization.
引用
收藏
页数:8
相关论文
共 38 条
  • [1] Ultrafast selective extraction of hot holes from cesium lead iodide perovskite films
    Qing Shen
    Teresa S.Ripolles
    Jacky Even
    Yaohong Zhang
    Chao Ding
    Feng Liu
    Takuya Izuishi
    Naoki Nakazawa
    Taro Toyoda
    Yuhei Ogomi
    Shuzi Hayase
    Journal of Energy Chemistry , 2018, (04) : 1170 - 1174
  • [2] Ultrafast selective extraction of hot holes from cesium lead iodide perovskite films
    Shen, Qing
    Ripolles, Teresa S.
    Even, Jacky
    Zhang, Yaohong
    Ding, Chao
    Liu, Feng
    Izuishi, Takuya
    Nakazawa, Naoki
    Toyoda, Taro
    Ogomi, Yuhei
    Hayase, Shuzi
    JOURNAL OF ENERGY CHEMISTRY, 2018, 27 (04) : 1170 - 1174
  • [3] Ultrafast selective extraction of hot holes from cesium lead iodide perovskite films
    Qing Shen
    Teresa SRipolles
    Jacky Even
    Yaohong Zhang
    Chao Ding
    Feng Liu
    Takuya Izuishi
    Naoki Nakazawa
    Taro Toyoda
    Yuhei Ogomi
    Shuzi Hayase
    Journal of Energy Chemistry, 2018, 27 (04) : 1170 - 1174
  • [4] Hot-Hole Cooling Controls the Initial Ultrafast Relaxation in Methylammonium Lead Iodide Perovskite
    Hedley, Gordon J.
    Quarti, Claudio
    Harwell, Jonathon
    Prezhdo, Oleg V.
    Beljonne, David
    Samuel, Ifor D. W.
    SCIENTIFIC REPORTS, 2018, 8
  • [5] Hot-Hole Cooling Controls the Initial Ultrafast Relaxation in Methylammonium Lead Iodide Perovskite
    Gordon J. Hedley
    Claudio Quarti
    Jonathon Harwell
    Oleg V. Prezhdo
    David Beljonne
    Ifor D. W. Samuel
    Scientific Reports, 8
  • [6] Persistent Energetic Electrons in Methylammonium Lead Iodide Perovskite Thin Films
    Niesner, Daniel
    Zhu, Haiming
    Miyata, Kiyoshi
    Joshi, Prakriti P.
    Evans, Tyler. J. S.
    Kudisch, Bryan. J.
    Trinh, M. Tuan
    Marks, Manuel
    Zhu, X. -Y.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (48) : 15717 - 15726
  • [7] In Situ Observation of Crystallization of Methylammonium Lead Iodide Perovskite from Microdroplets
    Li, Yahui
    Zhao, Zhenhao
    Lin, Feng
    Cao, Xiaobing
    Cui, Xian
    Wei, Jinquan
    SMALL, 2017, 13 (26)
  • [8] Atomistic Mechanism of the Nucleation of Methylammonium Lead Iodide Perovskite from Solution
    Ahlawat, Paramvir
    Dar, M. Ibrahim
    Piaggi, Pablo
    Gratzel, Michael
    Parrinello, Michele
    Rothlisberger, Ursula
    CHEMISTRY OF MATERIALS, 2020, 32 (01) : 529 - 536
  • [9] Direct Crystallization Route to Methylammonium Lead Iodide Perovskite from an Ionic Liquid
    Moore, David T.
    Tan, Kwan W.
    Sai, Hiroaki
    Barteau, Katherine P.
    Wiesner, Ulrich
    Estroff, Lara A.
    CHEMISTRY OF MATERIALS, 2015, 27 (09) : 3197 - 3199
  • [10] Conversion efficiency enhancement of methylammonium lead triiodide perovskite solar cells converted from thermally deposited lead iodide via thin methylammonium iodide interlayer
    Lai W.-C.
    Hsieh W.-M.
    Yu H.-C.
    Yang S.-H.
    Guo T.-F.
    Chen P.
    Organic Electronics, 2020, 82