DENSITY ESTIMATION BY ENTROPY MAXIMIZATION WITH KERNELS

被引:0
|
作者
Fu, Geng-Shen [1 ]
Boukouvalas, Zois [2 ]
Adali, Tulay [1 ]
机构
[1] Univ Maryland Baltimore Cty, Dept CSEE, Baltimore, MD 21250 USA
[2] Univ Maryland Baltimore Cty, Dept Math & Stat, Baltimore, MD 21250 USA
关键词
Probability density estimation; Maximum entropy distributions; Gaussian kernel; INFORMATION-THEORY;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The estimation of a probability density function is one of the most fundamental problems in statistics. The goal is achieving a desirable balance between flexibility while maintaining as simple a form as possible to allow for generalization, and efficient implementation. In this paper, we use the maximum entropy principle to achieve this goal and present a density estimator that is based on two types of approximation. We employ both global and local measuring functions, where Gaussian kernels are used as local measuring functions. The number of the Gaussian kernels is estimated by the minimum description length criterion, and the parameters are estimated by expectation maximization and a new probability difference measure. Experimental results show the flexibility and desirable performance of this new method.
引用
收藏
页码:1896 / 1900
页数:5
相关论文
共 50 条
  • [1] Probability density estimation using entropy maximization
    Miller, G
    Horn, D
    NEURAL COMPUTATION, 1998, 10 (07) : 1925 - 1938
  • [2] Density estimation using entropy maximization for semi-continuous data
    Popuri, Sai K.
    Neerchal, Nagaraj K.
    Mehta, Amita
    Mousavi, Ahmad
    DIGITAL SIGNAL PROCESSING, 2021, 116
  • [3] Density estimation using entropy maximization for semi-continuous data
    Popuri, Sai K.
    Neerchal, Nagaraj K.
    Mehta, Amita
    Mousavi, Ahmad
    Digital Signal Processing: A Review Journal, 2021, 116
  • [4] Understanding Cardinality Estimation using Entropy Maximization
    Re, Christopher
    Suciu, Dan
    PODS 2010: PROCEEDINGS OF THE TWENTY-NINTH ACM SIGMOD-SIGACT-SIGART SYMPOSIUM ON PRINCIPLES OF DATABASE SYSTEMS, 2010, : 53 - 64
  • [5] Understanding Cardinality Estimation Using Entropy Maximization
    Re, Christopher
    Suciu, Dan
    ACM TRANSACTIONS ON DATABASE SYSTEMS, 2012, 37 (01):
  • [6] INDEPENDENT COMPONENT ANALYSIS USING SEMI-PARAMETRIC DENSITY ESTIMATION VIA ENTROPY MAXIMIZATION
    Boukouvalas, Zois
    Levin-Schwartz, Yuri
    Mowakeaa, Rami
    Fu, Geng-Shen
    Adali, Tulay
    2018 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2018, : 403 - 407
  • [7] CANONICAL KERNELS FOR DENSITY-ESTIMATION
    MARRON, JS
    NOLAN, D
    STATISTICS & PROBABILITY LETTERS, 1988, 7 (03) : 195 - 199
  • [8] Convolution power kernels for density estimation
    Comte, F.
    Genon-Catalot, V.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (07) : 1698 - 1715
  • [9] Robust kernels for kernel density estimation
    Wang, Shaoping
    Li, Ang
    Wen, Kuangyu
    Wu, Ximing
    ECONOMICS LETTERS, 2020, 191
  • [10] The explicit density functional and its connection with entropy maximization
    Attard, P
    JOURNAL OF STATISTICAL PHYSICS, 2000, 100 (1-2) : 445 - 473