Sectional analysis for design of ultra-high performance fiber reinforced concrete beams with passive reinforcement

被引:19
|
作者
Xia, Jun [1 ]
Chan, Titchenda [2 ]
Mackie, Kevin R. [2 ]
Saleem, Muhammed A. [3 ]
Mirmiran, Amir [4 ]
机构
[1] Xian Jiaotong Liverpool Univ, Dept Civil Engn, 111 Renai Rd,Suzhou Ind Pk, Suzhou 215123, Peoples R China
[2] Univ Cent Florida, Dept Civil Environm & Construct Engn, Orlando, FL 32816 USA
[3] Univ Engn & Technol, Dept Civil Engn, Lahore, Pakistan
[4] Univ Texas Tyler, Dept Civil Engn, Tyler, TX 75799 USA
关键词
Uniaxial constitutive model; Flexural design equation; Orientation factor;
D O I
10.1016/j.engstruct.2018.01.035
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Sectional flexural analysis, as performed in normal strength concrete design, requires uniaxial constitutive models. For ultra-high performance fiber reinforced concrete (UHPFRC), the constitutive model tensile backbone varies with section heights for different flexural members, due to the size-dependent stress-crack opening relation used to derive it. In this paper, several simplified size-independent constitutive models were investigated. For unreinforced sections with heights between 51 mm and 1067 mm, the elastic-perfectly-plastic tension model leads to conservative ultimate moment prediction (or results within 5%) when compared to that obtained by the size-dependent model. For reinforced sections, the difference between the two models is affected by the reinforcing condition and is even smaller than the unreinforced cases. By assuming an elastic-perfectly-plastic tension model, the flexural strength of rectangular or T section UHPFRC beams was estimated analytically. The flexural strengths are greatly influenced by the reinforcement ratio and yielding strength of the longitudinal reinforcement. Including shear strength predictive equations from past research, the load capacity and failure mode for rectangular and T beams are presented in a design chart. The impact of several factors on UHPFRC beam flexural responses were investigated, such as different compressive strength, curing conditions, and anisotropic fiber orientation distributions. The load-deflection relationships generated from beam flexural analysis were compared to experimental results for both unreinforced and reinforced beams, with or without fiber alignment. Factors affecting the first crack strength in tension (i.e., fiber orientation distribution) had greater impact on the flexural strength of UHPFRC beams than the effect of using a size-dependent model.
引用
收藏
页码:121 / 132
页数:12
相关论文
共 50 条
  • [1] Minimum shear reinforcement for ultra-high performance fiber reinforced concrete deep beams
    Yousef, Ahmed M.
    Tahwia, Ahmed M.
    Marami, Nagat A.
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 184 : 177 - 185
  • [2] Shear Tests for Ultra-High Performance Fiber Reinforced Concrete (UHPFRC) Beams with Shear Reinforcement
    Woo-Young Lim
    Sung-Gul Hong
    International Journal of Concrete Structures and Materials, 2016, 10 : 177 - 188
  • [3] Shear Tests for Ultra-High Performance Fiber Reinforced Concrete (UHPFRC) Beams with Shear Reinforcement
    Lim, Woo-Young
    Hong, Sung-Gul
    INTERNATIONAL JOURNAL OF CONCRETE STRUCTURES AND MATERIALS, 2016, 10 (02) : 177 - 188
  • [4] Flexural behavior of reinforced concrete beams strengthened with ultra-high performance fiber reinforced concrete
    Al-Osta, M. A.
    Isa, M. N.
    Baluch, M. H.
    Rahman, M. K.
    CONSTRUCTION AND BUILDING MATERIALS, 2017, 134 : 279 - 296
  • [5] Shear behavior of fiber-reinforced ultra-high performance concrete beams
    Meszoely, Tamas
    Randl, Norbert
    ENGINEERING STRUCTURES, 2018, 168 : 119 - 127
  • [6] Using ultra-high performance fiber reinforced concrete in improvement shear strength of reinforced concrete beams
    Said, Asmaa
    Elsayed, Mahmoud
    Abd El-Azim, Ahmed
    Althoey, Fadi
    Tayeh, Bassam A.
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2022, 16
  • [7] Flexural behavior of reinforced concrete beams repaired with ultra-high performance fiber reinforced concrete (UHPFRC)
    Safdar, Muhammad
    Matsumoto, Takashi
    Kakuma, Ko
    COMPOSITE STRUCTURES, 2016, 157 : 448 - 460
  • [8] Shear behaviour of reinforced concrete beams strengthened with ultra-high performance fiber reinforced concrete (UHPFRC)
    Huang, Yitao
    Gu, Dawei
    Mustafa, Shozab
    Gruenewald, Steffen
    Lukovic, Mladena
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2023, 19
  • [9] Flexural Performance of Lightly Reinforced Concrete Beams with Ultra-High Strength Fiber-Reinforced Concrete (UHSFRC)
    Kang, Su-Tae
    Ryu, Gum-Sung
    Park, Jung-Jun
    Koh, Kyung-Taek
    Kim, Sung-Wook
    ADVANCED SCIENCE LETTERS, 2011, 4 (03) : 1032 - 1038
  • [10] Size effect of ultra-high performance fiber reinforced concrete composite beams in shear
    Hussein, Luaay
    Amleh, Lamya
    STRUCTURAL CONCRETE, 2018, 19 (01) : 141 - 151