New soliton structures in the (2+1)-dimensional nonlinear KdV equations

被引:1
|
作者
He, BG [1 ]
Xu, CZ
Zhang, JF
机构
[1] Zhejiang Normal Univ, Inst Nonlinear Phys, Jinhua 321004, Peoples R China
[2] Jinhua Educ Coll, Dept Phys, Jinhua 321000, Peoples R China
关键词
variable separation approach; (2+1)-dimensional nonlinear KdV equation; new soliton structures;
D O I
10.7498/aps.54.5525
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A new variable separation approach for the (2 + 1)-dimensional nonlinear KdV equations is obtained by using variable separation technique and selecting a class of new seed solutions. Some new kinds of periodic soliton structutres, ring form soliton structures and curvilinear soliton structures are revealed by selecting the arbitrary functions appropriately. These structures, which can not be obtained from the formula commonly used in literature, are first reported.
引用
收藏
页码:5525 / 5529
页数:5
相关论文
共 38 条
  • [1] ABLOWITZ MJ, 1974, STUD APPL MATH, V53, P249
  • [2] SCATTERING OF LOCALIZED SOLITONS IN THE PLANE
    BOITI, M
    LEON, JJP
    MARTINA, L
    PEMPINELLI, F
    [J]. PHYSICS LETTERS A, 1988, 132 (8-9) : 432 - 439
  • [3] ON THE SPECTRAL TRANSFORM OF A KORTEWEG-DEVRIES EQUATION IN 2 SPATIAL DIMENSIONS
    BOITI, M
    LEON, JJP
    MANNA, M
    PEMPINELLI, F
    [J]. INVERSE PROBLEMS, 1986, 2 (03) : 271 - 279
  • [4] SYMMETRY REDUCTIONS AND EXACT-SOLUTIONS OF SHALLOW-WATER WAVE-EQUATIONS
    CLARKSON, PA
    MANSFIELD, EL
    [J]. ACTA APPLICANDAE MATHEMATICAE, 1995, 39 (1-3) : 245 - 276
  • [5] HYDRODYNAMIC FOUNDATION AND PAINLEVE ANALYSIS OF HIROTA-SATSUMA-TYPE EQUATIONS
    ESPINOSA, A
    FUJIOKA, J
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1994, 63 (04) : 1289 - 1294
  • [6] Hong KZ, 2003, COMMUN THEOR PHYS, V39, P393
  • [7] Coherent soliton structures of the (2+1)-dimensional long-wave-short-wave resonance interaction equation
    Huang, WH
    Zhang, JF
    Sheng, ZM
    [J]. CHINESE PHYSICS, 2002, 11 (11): : 1101 - 1105
  • [8] Lou S.Y., 1996, J. Phys. A Math. Gen, V29, P4029, DOI [10.1088/0305-4470/29/14/038, DOI 10.1088/0305-4470/29/14/038]
  • [9] (2+1)-dimensional compacton solutions with and without completely elastic interaction properties
    Lou, SY
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (49): : 10619 - 10628
  • [10] Localized excitations of the (2+1)-dimensional sine-Gordon system
    Lou, SY
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (13): : 3877 - 3892