Deconvolution of Complex 1D NMR Spectra Using Objective Model Selection

被引:15
|
作者
Hughes, Travis S. [1 ]
Wilson, Henry D. [2 ]
de Vera, Ian Mitchelle S. [1 ]
Kojetin, Douglas J. [1 ]
机构
[1] Scripps Florida, Scripps Res Inst, Dept Mol Therapeut, Jupiter, FL 33458 USA
[2] Scripps Florida, Scripps Res Inst, Grad Program, Jupiter, FL 33458 USA
来源
PLOS ONE | 2015年 / 10卷 / 08期
基金
美国国家卫生研究院;
关键词
LINE-SHAPES; GAMMA; DOMAIN; LIGAND;
D O I
10.1371/journal.pone.0134474
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Fluorine (F-19) NMR has emerged as a useful tool for characterization of slow dynamics in F-19-labeled proteins. One-dimensional (1D) F-19 NMR spectra of proteins can be broad, irregular and complex, due to exchange of probe nuclei between distinct electrostatic environments; and therefore cannot be deconvoluted and analyzed in an objective way using currently available software. We have developed a Python-based deconvolution program, decon1d, which uses Bayesian information criteria (BIC) to objectively determine which model (number of peaks) would most likely produce the experimentally obtained data. The method also allows for fitting of intermediate exchange spectra, which is not supported by current software in the absence of a specific kinetic model. In current methods, determination of the deconvolution model best supported by the data is done manually through comparison of residual error values, which can be time consuming and requires model selection by the user. In contrast, the BIC method used by decond1d provides a quantitative method for model comparison that penalizes for model complexity helping to prevent over-fitting of the data and allows identification of the most parsimonious model. The decon1d program is freely available as a downloadable Python script at the project website (https://github.com/hughests/decon1d/).
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Bayesian deconvolution and quantification of metabolites in complex 1D NMR spectra using BATMAN
    Jie Hao
    Manuel Liebeke
    William Astle
    Maria De Iorio
    Jacob G Bundy
    Timothy M D Ebbels
    Nature Protocols, 2014, 9 : 1416 - 1427
  • [2] Bayesian deconvolution and quantification of metabolites in complex 1D NMR spectra using BATMAN
    Hao, Jie
    Liebeke, Manuel
    Astle, William
    De Iorio, Maria
    Bundy, Jacob G.
    Ebbels, Timothy M. D.
    NATURE PROTOCOLS, 2014, 9 (06) : 1416 - 1427
  • [3] Deconvolution of 1D NMR spectra: A deep learning-based approach
    Schmid, N.
    Bruderer, S.
    Paruzzo, F.
    Fischetti, G.
    Toscano, G.
    Graf, D.
    Fey, M.
    Henrici, A.
    Ziebart, V.
    Heitmann, B.
    Grabner, H.
    Wegner, J. D.
    Sigel, R. K. O.
    Wilhelm, D.
    JOURNAL OF MAGNETIC RESONANCE, 2023, 347
  • [4] Reference deconvolution, phase correction, and line listing of NMR spectra by the 1D filter diagonalization method
    Hu, HT
    Van, QN
    Mandelshtam, VA
    Shaka, AJ
    JOURNAL OF MAGNETIC RESONANCE, 1998, 134 (01) : 76 - 87
  • [5] LOCAL SYMMETRIZATION IN 1D NMR-SPECTRA
    KUPCE, E
    WRACKMEYER, B
    JOURNAL OF MAGNETIC RESONANCE, 1991, 91 (03): : 644 - 647
  • [6] PREDICTING 1D NMR-SPECTRA - HYPERNMR
    GILPIN, RK
    ANALYTICAL CHEMISTRY, 1995, 67 (17) : A541 - A541
  • [7] A Bayesian Model of NMR Spectra for the Deconvolution and Quantification of Metabolites in Complex Biological Mixtures
    Astle, William
    De Iorio, Maria
    Richardson, Sylvia
    Stephens, David
    Ebbels, Timothy
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2012, 107 (500) : 1259 - 1271
  • [9] THE ACCURACY OF QUANTIFICATION FROM 1D NMR-SPECTRA USING THE PIQABLE ALGORITHM
    NELSON, SJ
    BROWN, TR
    JOURNAL OF MAGNETIC RESONANCE, 1989, 84 (01): : 95 - 109
  • [10] An R-Package for the Deconvolution and Integration of 1D NMR Data: MetaboDecon1D
    Haeckl, Martina
    Tauber, Philipp
    Schweda, Frank
    Zacharias, Helena U.
    Altenbuchinger, Michael
    Oefner, Peter J.
    Gronwald, Wolfram
    METABOLITES, 2021, 11 (07)