On weak (σ, δ)-rigid rings over Noetherian rings

被引:1
|
作者
Bhat, Vijay Kumar [1 ]
Singh, Pradeep [1 ]
Sharma, Sunny [1 ]
机构
[1] SMVD Univ, Sch Math, Katra, Jammu & Kashmir, India
关键词
automorphism; derivation; nilpotent element; completely semiprime ideal; ORE EXTENSIONS;
D O I
10.2478/ausm-2020-0001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a Noetherian integral domain which is also an algebra over Q (Q is the field of rational numbers). Let sigma be an endomorphism of R and delta a sigma-derivation of R. We recall that a ring R is a weak (sigma, delta)-rigid ring if a(sigma(a)) + delta(a)) is an element of N(R) if and only if a is an element of N(R) for a is an element of R (N(R) is the set of nilpotent elements of R). With this we prove that if R is a Noetherian integral domain which is also an algebra over Q, sigma an automorphism of R and delta a sigma-derivation of R such that R is a weak (sigma, delta)-rigid ring, then N(R) is completely semiprime.
引用
收藏
页码:5 / 13
页数:9
相关论文
共 50 条
  • [1] LOCALLY NOETHERIAN RINGS ARE WEAK INERTIAL COEFFICIENT RINGS
    WEHLEN, JA
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (02): : A304 - A304
  • [2] Skew Polynomial Rings over Weak sigma-rigid Rings and sigma(*)-rings
    Kumari, Neetu
    Gosani, Smarti
    Bhat, V. K.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2013, 6 (01): : 59 - 65
  • [3] Ore Extensions over Weak sigma-rigid Rings and sigma(*)-rings
    Bhat, V. K.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2010, 3 (04): : 695 - 703
  • [4] Strongly Graded Rings Over Hereditary Noetherian Prime Rings
    Akalan, E.
    Marubayashi, H.
    Ueda, A.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (03) : 2255 - 2270
  • [5] POLYNOMIAL FIBER RINGS OF ALGEBRAS OVER NOETHERIAN-RINGS
    ASANUMA, T
    INVENTIONES MATHEMATICAE, 1987, 87 (01) : 101 - 127
  • [6] Strongly Graded Rings Over Hereditary Noetherian Prime Rings
    E. Akalan
    H. Marubayashi
    A. Ueda
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 2255 - 2270
  • [7] Relative purity over Noetherian rings
    Bican, Ladislav
    MATHEMATICA SLOVACA, 2007, 57 (04) : 333 - 338
  • [8] ON THE GRADE OF MODULES OVER NOETHERIAN RINGS
    Huang, Zhaoyong
    COMMUNICATIONS IN ALGEBRA, 2008, 36 (10) : 3616 - 3631
  • [9] Embedding of modules over Noetherian rings
    Huang, Chonghui
    Xu, Zhenghua
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2014, 52 (05): : 63 - 68
  • [10] MONOLITHIC MODULES OVER NOETHERIAN RINGS
    Carvalho, Paula A. A. B.
    Musson, Ian M.
    GLASGOW MATHEMATICAL JOURNAL, 2011, 53 : 683 - 692