A COMBINATION OF SUPPORT VECTOR MACHINE AND k-NEAREST NEIGHBORS FOR MACHINE FAULT DETECTION

被引:20
|
作者
Andre, Amaury B. [1 ]
Beltrame, Eduardo [1 ]
Wainer, Jacques [2 ]
机构
[1] SEMEQ, Limeria, SP, Brazil
[2] Univ Estadual Campinas, Comp Inst, BR-13083852 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
ARTIFICIAL NEURAL-NETWORKS; CLASSIFICATION; DIAGNOSIS;
D O I
10.1080/08839514.2013.747370
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This article presents a combination of support vector machine (SVM) and k-nearest neighbor (k-NN) to monitor rotational machines using vibrational data. The system is used as triage for human analysis and, thus, a very low false negative rate is more important than high accuracy. Data are classified using a standard SVM, but for data within the SVM margin, where misclassifications are more like, a k-NN is used to reduce the false negative rate. Using data from a month of operations of a predictive maintenance company, the system achieved a zero false negative rate and accuracy ranging from 75% to 84% for different machine types such as induction motors, gears, and rolling-element bearings.
引用
收藏
页码:36 / 49
页数:14
相关论文
共 50 条
  • [1] Support vector machine and K-nearest neighbour for unbalanced fault detection
    Moosavian, Ashkan
    Ahmadi, Hojat
    Sakhaei, Babak
    Labbafi, Reza
    JOURNAL OF QUALITY IN MAINTENANCE ENGINEERING, 2014, 20 (01) : 65 - +
  • [2] Support vector machine combined with K-nearest neighbors for solar flare forecasting
    Li, Rong
    Wang, Hua-Ning
    He, Han
    Cui, Yan-Mei
    Du, Zhan-Le
    CHINESE JOURNAL OF ASTRONOMY AND ASTROPHYSICS, 2007, 7 (03): : 441 - 447
  • [4] Prediction of Breast Cancer Using Support Vector Machine and K-Nearest Neighbors
    Islam, Md. Milon
    Iqbal, Hasib
    Haque, Md. Rezwanul
    Hasan, Md. Kamrul
    2017 IEEE REGION 10 HUMANITARIAN TECHNOLOGY CONFERENCE (R10-HTC), 2017, : 226 - 229
  • [5] Microscopic retinal blood vessels detection and segmentation using support vector machine and K-nearest neighbors
    Rehman, Amjad
    Harouni, Majid
    Karimi, Mohsen
    Saba, Tanzila
    Bahaj, Saeed Ali
    Awan, Mazar Javed
    MICROSCOPY RESEARCH AND TECHNIQUE, 2022, 85 (05) : 1899 - 1914
  • [6] Introduction to machine learning: k-nearest neighbors
    Zhang, Zhongheng
    ANNALS OF TRANSLATIONAL MEDICINE, 2016, 4 (11)
  • [7] Comparison of Support Vector Machine, Naive Bayes, and K-Nearest Neighbors Algorithms for Classifying Heart Disease
    Lewandowicz, Bartosz
    Kisiala, Konrad
    INFORMATION AND SOFTWARE TECHNOLOGIES, ICIST 2023, 2024, 1979 : 274 - 285
  • [8] Application of support vector machine combined with K-nearest neighbors in solar flare and solar proton events forecasting
    Li, Rong
    Cui, Yanmei
    He, Han
    Wang, Huaning
    ADVANCES IN SPACE RESEARCH, 2008, 42 (09) : 1469 - 1474
  • [9] Concrete Strength Prediction Using Machine Learning Methods CatBoost, k-Nearest Neighbors, Support Vector Regression
    Beskopylny, Alexey N.
    Stel'makh, Sergey A.
    Shcherban', Evgenii M.
    Mailyan, Levon R.
    Meskhi, Besarion
    Razveeva, Irina
    Chernil'nik, Andrei
    Beskopylny, Nikita
    APPLIED SCIENCES-BASEL, 2022, 12 (21):
  • [10] CLASSIFICATION OF DIABETES MELLITUS IN HUMAN WITH CUSTOMIZED K-NEAREST NEIGHBORS ALGORITHM IN COMPARISON WITH SUPPORT VECTOR MACHINE ALGORITHM
    Nagarjuna, Bayinedi
    Kinol, Mary Joy A.
    INTERNATIONAL JOURNAL OF EARLY CHILDHOOD SPECIAL EDUCATION, 2022, 14 (03) : 5547 - 5555