No quasi-long-range order in a two-dimensional liquid crystal

被引:26
|
作者
Paredes, Ricardo [1 ]
Isabel Farinas-Sanchez, Ana [2 ]
Botet, Robert [3 ]
机构
[1] Inst Venezolano Invest Cient, Ctr Fis, Lab Fis Estadist, Caracas 1020A, Venezuela
[2] Univ Simon Bolivar, Dept Phys, Caracas 1080A, Venezuela
[3] Univ Paris Sud, CNRS, UMR8502, Phys Solides Lab, F-91405 Orsay, France
来源
PHYSICAL REVIEW E | 2008年 / 78卷 / 05期
关键词
D O I
10.1103/PhysRevE.78.051706
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Systems with global symmetry group O(2) experience topological transition in the two-dimensional space. But there is controversy about such a transition for systems with global symmetry group O(3). As an example of the latter case, we study the Lebwohl-Lasher model for the two-dimensional liquid crystal, using three different methods independent of the proper values of possible critical exponents. Namely, we analyze the at-equilibrium order parameter distribution function with (1) the hyperscaling relation; (2) the first-scaling collapse for the probability distribution function; and (3) the Binder's cumulant. We give strong evidence for definite lack of a line of critical points at low temperatures in the Lebwohl-Lasher model, contrary to conclusions of a number of previous numerical studies.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Quasi-long-range order in trapped two-dimensional Bose gases
    Boettcher, Igor
    Holzmann, Markus
    PHYSICAL REVIEW A, 2016, 94 (01)
  • [2] Absence of nematic quasi-long-range order in two-dimensional liquid crystals with three director components
    Delfino, Gesualdo
    Diouane, Youness
    Lamsen, Noel
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (03)
  • [3] Quasi-long-range order in columnar liquid crystals
    Caille, Alain
    Hebert, Matthieu
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1996, 54 (05):
  • [4] Quasi-long-range order in columnar liquid crystals
    Caille, A
    Hebert, M
    PHYSICAL REVIEW E, 1996, 54 (05) : R4544 - R4547
  • [5] Does quasi-long-range order in the two-dimensional XY model really survive weak random phase fluctuations?
    Mudry, C
    Wen, XG
    NUCLEAR PHYSICS B, 1999, 549 (03) : 613 - 656
  • [6] Enhancing (quasi-)long-range order in a two-dimensional driven crystal
    Maire, R.
    Plati, A.
    JOURNAL OF CHEMICAL PHYSICS, 2024, 161 (05):
  • [7] QUASI-LONG-RANGE ORDER IN ANYON SUPERFLUIDS
    BOYANOVSKY, D
    JASNOW, D
    PHYSICA A, 1991, 177 (1-3): : 537 - 543
  • [8] Quasi-long-range order in trapped systems
    Crecchi, Federico
    Vicari, Ettore
    PHYSICAL REVIEW A, 2011, 83 (03):
  • [9] Pseudogaps in one-dimensional models with quasi-long-range order
    Millis, AJ
    Monien, H
    PHYSICAL REVIEW B, 2000, 61 (18) : 12496 - 12502
  • [10] Random-bond disorder in two-dimensional noncollinear XY antiferromagnets: From quasi-long-range order to spin glass
    Dey, Santanu
    Andrade, Eric C.
    Vojta, Matthias
    PHYSICAL REVIEW B, 2020, 102 (12)