New monomial bent functions over the finite fields of odd characteristic

被引:0
|
作者
Helleseth, T [1 ]
Kholosha, A [1 ]
机构
[1] Univ Bergen, Dept Informat, Selmer Ctr, N-5020 Bergen, Norway
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider p-ary bent functions having the form f(x) = Tr-n (ax(d)). A new class of ternary monomial regular bent function with the Dillon exponent is discovered. The existence of Dillon bent functions in the general case is an open problem of deciding whether a certain Kloosterman sum can take on the value -1. Also described is the general Gold-like form of a bent function that covers all the previously known monomial quadratic cases. We also discuss the (weak) regularity of our new as well as of known monomial bent functions and give the first example of a not weakly regular bent function.
引用
收藏
页码:72 / 76
页数:5
相关论文
共 50 条
  • [1] Monomial and quadratic bent functions over the finite fields of odd characteristic
    Helleseth, T
    Kholosha, A
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (05) : 2018 - 2032
  • [2] New Binomial Bent Functions over the Finite Fields of Odd Characteristic
    Helleseth, Tor
    Kholosha, Alexander
    2010 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2010, : 1277 - 1281
  • [3] New Binomial Bent Functions Over the Finite Fields of Odd Characteristic
    Helleseth, Tor
    Kholosha, Alexander
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (09) : 4646 - 4652
  • [4] On a class of binomial bent functions over the finite fields of odd characteristic
    Zheng, Dabin
    Yu, Long
    Hu, Lei
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2013, 24 (06) : 461 - 475
  • [5] On a class of binomial bent functions over the finite fields of odd characteristic
    Dabin Zheng
    Long Yu
    Lei Hu
    Applicable Algebra in Engineering, Communication and Computing, 2013, 24 : 461 - 475
  • [6] A Class of Binomial Bent Functions Over the Finite Fields of Odd Characteristic
    Jia, Wenjie
    Zeng, Xiangyong
    Helleseth, Tor
    Li, Chunlei
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (09) : 6054 - 6063
  • [7] Quadratic bent and semi-bent functions over finite fields of odd characteristic
    Zheng, Dabin, 1600, Chinese Institute of Electronics (23):
  • [8] Quadratic Bent and Semi-bent Functions over Finite Fields of Odd Characteristic
    Zheng Dabin
    Yu Long
    Hu Lei
    CHINESE JOURNAL OF ELECTRONICS, 2014, 23 (04) : 767 - 772
  • [9] Quadratic Bent and Semi-bent Functions over Finite Fields of Odd Characteristic
    ZHENG Dabin
    YU Long
    HU Lei
    ChineseJournalofElectronics, 2014, 23 (04) : 767 - 772
  • [10] Constructing new APN functions and bent functions over finite fields of odd characteristic via the switching method
    Xu, Guangkui
    Cao, Xiwang
    Xu, Shanding
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2016, 8 (01): : 155 - 171